llm
InferenceEndpointsLLM
Bases: LLM
Source code in src/distilabel/llm/huggingface/inference_endpoints.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
model_name: str
property
Returns the model name of the endpoint.
__init__(endpoint_name, task, endpoint_namespace=None, token=None, max_new_tokens=128, repetition_penalty=None, seed=None, do_sample=False, temperature=None, top_k=None, top_p=None, typical_p=None, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
Initializes the InferenceEndpointsLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
endpoint_name |
str
|
The name of the endpoint. |
required |
task |
Task
|
The task to be performed by the LLM. |
required |
endpoint_namespace |
Union[str, None]
|
The namespace of the endpoint. Defaults to None. |
None
|
token |
Union[str, None]
|
The token for the endpoint. Defaults to None. |
None
|
max_new_tokens |
int
|
The maximum number of tokens to be generated. Defaults to 128. |
128
|
repetition_penalty |
Union[float, None]
|
The repetition penalty to be used for generation. Defaults to None. |
None
|
seed |
Union[int, None]
|
The seed for generation. Defaults to None. |
None
|
do_sample |
bool
|
Whether to do sampling. Defaults to False. |
False
|
temperature |
Union[float, None]
|
The temperature for generation. Defaults to None. |
None
|
top_k |
Union[int, None]
|
The top_k for generation. Defaults to None. |
None
|
top_p |
Union[float, None]
|
The top_p for generation. Defaults to None. |
None
|
typical_p |
Union[float, None]
|
The typical_p for generation. Defaults to None. |
None
|
num_threads |
Union[int, None]
|
The number of threads. Defaults to None. |
None
|
prompt_format |
Union[SupportedFormats, None]
|
The format of the prompt. Defaults to None. |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
The function for formatting the prompt. Defaults to None. |
None
|
Examples:
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import InferenceEndpointsLLM
>>> task = Task()
>>> llm = InferenceEndpointsLLM(
... endpoint_name="<INFERENCE_ENDPOINT_NAME>",
... task=task,
... )
Source code in src/distilabel/llm/huggingface/inference_endpoints.py
LlamaCppLLM
Bases: LLM
Source code in src/distilabel/llm/llama_cpp.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
model_name: str
property
Returns the name of the llama-cpp model, which is the same as the model path.
__init__(model, task, max_new_tokens=128, temperature=0.8, top_p=0.95, top_k=40, repeat_penalty=1.1, prompt_format=None, prompt_formatting_fn=None)
Initializes the LlamaCppLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Llama
|
the llama-cpp model to be used. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
temperature |
float
|
the temperature to be used for generation. Defaults to 0.8. |
0.8
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 0.95. |
0.95
|
top_k |
int
|
the top-k value to be used for generation. Defaults to 40. |
40
|
repeat_penalty |
float
|
the repeat penalty to be used for generation. Defaults to 1.1. |
1.1
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Examples:
>>> from llama_cpp import Llama
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import LlamaCppLLM
>>> model = Llama(model_path="path/to/model")
>>> task = Task()
>>> llm = LlamaCppLLM(model=model, task=task)
Source code in src/distilabel/llm/llama_cpp.py
OpenAILLM
Bases: LLM
Source code in src/distilabel/llm/openai.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
available_models: List[str]
cached
property
Returns the list of available models in your OpenAI account.
model_name: str
property
Returns the name of the OpenAI model.
__init__(task, model='gpt-3.5-turbo', client=None, openai_api_key=None, max_new_tokens=128, frequency_penalty=0.0, presence_penalty=0.0, temperature=1.0, top_p=1.0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
Initializes the OpenAILLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the LLM. |
required |
model |
str
|
the model to be used for generation. Defaults to "gpt-3.5-turbo". |
'gpt-3.5-turbo'
|
client |
Union[OpenAI, None]
|
an OpenAI client to be used for generation.
If |
None
|
openai_api_key |
Union[str, None]
|
the OpenAI API key to be used for generation.
If |
None
|
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
frequency_penalty |
float
|
the frequency penalty to be used for generation. Defaults to 0.0. |
0.0
|
presence_penalty |
float
|
the presence penalty to be used for generation. Defaults to 0.0. |
0.0
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the provided |
Examples:
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import OpenAILLM
>>> task = Task()
>>> llm = OpenAILLM(model="gpt-3.5-turbo", task=task)
Source code in src/distilabel/llm/openai.py
TransformersLLM
Bases: LLM
Source code in src/distilabel/llm/huggingface/transformers.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|
device: device
cached
property
Returns the device to be used for generation.
model_name: str
property
Returns the name of the Transformers model.
__init__(model, tokenizer, task, max_new_tokens=128, do_sample=False, temperature=1.0, top_k=50, top_p=1.0, typical_p=1.0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
Initializes the TransformersLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
PreTrainedModel
|
the model to be used for generation. |
required |
tokenizer |
PreTrainedTokenizer
|
the tokenizer to be used for generation. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
do_sample |
bool
|
whether to sample from the model or not. Defaults to False. |
False
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. Defaults to 50. |
50
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
typical_p |
float
|
the typical-p value to be used for generation. Defaults to 1.0. |
1.0
|
num_threads |
Union[int, None]
|
the number of threads to be used for generation.
If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for formatting the prompts. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
the function to be used
for formatting the prompts. If |
None
|
Examples:
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import TransformersLLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> task = Task()
>>> llm = TransformersLLM(
... model=model,
... tokenizer=tokenizer,
... task=task,
... )
Source code in src/distilabel/llm/huggingface/transformers.py
vLLM
Bases: LLM
Source code in src/distilabel/llm/vllm.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
model_name: str
property
Returns the name of the vLLM model.
__init__(vllm, task, max_new_tokens=128, presence_penalty=0.0, frequency_penalty=0.0, temperature=1.0, top_p=1.0, top_k=-1, prompt_format=None, prompt_formatting_fn=None)
Initializes the vLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm |
LLM
|
the vLLM model to be used. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
presence_penalty |
float
|
the presence penalty to be used for generation. Defaults to 0.0. |
0.0
|
frequency_penalty |
float
|
the frequency penalty to be used for generation. Defaults to 0.0. |
0.0
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. Defaults to -1. |
-1
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Examples:
>>> from vllm import LLM
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import vLLM
>>> model = LLM(model="gpt2")
>>> task = Task()
>>> llm = vLLM(model=model, task=task)