Skip to content

base

TextGenerationTask dataclass

Bases: Task

A base Task definition for text generation using LLMs.

Parameters:

Name Type Description Default
system_prompt str

the system prompt to be used. Defaults to None.

"You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
principles Dict[str, List[str]]

the principles to be used for the system prompt. Defaults to None.

field(default_factory=lambda : {'harmlessness': harmlessness, 'helpfulness': helpfulness, 'truthfulness': truthfulness, 'honesty': honesty, 'verbalized_calibration': verbalized_calibration}, repr=False)
principles_distribution Union[Dict[str, float], Literal['balanced'], None]

the distribution of principles to be used for the system prompt. Defaults to None.

None

Examples:

>>> from distilabel.tasks.text_generation import TextGenerationTask
>>> task = TextGenerationTask()
Source code in src/distilabel/tasks/text_generation/base.py
@dataclass
class TextGenerationTask(Task):
    """A base `Task` definition for text generation using LLMs.

    Args:
        system_prompt (str, optional): the system prompt to be used. Defaults to `None`.
        principles (Dict[str, List[str]], optional): the principles to be used for the system prompt.
            Defaults to `None`.
        principles_distribution (Union[Dict[str, float], Literal["balanced"], None], optional): the
            distribution of principles to be used for the system prompt. Defaults to `None`.

    Examples:
        >>> from distilabel.tasks.text_generation import TextGenerationTask
        >>> task = TextGenerationTask()
    """

    system_prompt: str = (
        "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible,"
        " while being safe. Your answers should not include any harmful, unethical, racist, sexist,"
        " toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased"
        " and positive in nature.\nIf a question does not make any sense, or is not factually coherent,"
        " explain why instead of answering something not correct. If you don't know the answer to a"
        " question, please don't share false information."
    )
    principles: Dict[str, List[str]] = field(
        default_factory=lambda: {
            "harmlessness": UltraFeedbackPrinciples.harmlessness,
            "helpfulness": UltraFeedbackPrinciples.helpfulness,
            "truthfulness": UltraFeedbackPrinciples.truthfulness,
            "honesty": UltraFeedbackPrinciples.honesty,
            "verbalized_calibration": UltraFeedbackPrinciples.verbalized_calibration,
        },
        repr=False,
    )
    principles_distribution: Union[Dict[str, float], Literal["balanced"], None] = None

    __type__: Literal["generation"] = "generation"

    def __post_init__(self) -> None:
        """Validates the `principles_distribution` if it is a dict.

        Raises:
            ValueError: if the `principles_distribution` is a dict and it does not sum to 1.0.
            ValueError: if the `principles` are not included in the `principles_distribution`.
        """
        if isinstance(self.principles_distribution, dict):
            not_included_principles = [
                principle
                for principle in self.principles
                if principle not in self.principles_distribution
            ]
            if not_included_principles:
                principles_str = ", ".join(
                    [f"'{principle}'" for principle in not_included_principles]
                )
                raise ValueError(
                    f"Principles {principles_str} included in `principles` is not in"
                    " `principles_distribution`"
                )

            if sum(self.principles_distribution.values()) != 1.0:
                raise ValueError(
                    "`principles_distribution` must sum to 1.0 if it is a dict containing"
                    " the distribution of principles to use."
                )

    def _get_principle(self) -> str:
        """Gets a principle from the `principles` dict respecting the `principal_distribution`.

        Returns:
            str: the principle to be used.
        """
        if isinstance(self.principles_distribution, dict):
            principle_group = random.choices(
                list(self.principles_distribution.keys()),
                weights=list(self.principles_distribution.values()),
                k=1,
            )[0]
        else:
            principle_group = random.choice(list(self.principles.keys()))
        return random.choice(self.principles[principle_group])

    def generate_prompt(self, input: str) -> Prompt:
        """Generates the prompt to be used for generation.

        Args:
            input (str): the input to be used for generation.

        Returns:
            Prompt: the generated prompt.

        Examples:
            >>> from distilabel.tasks.text_generation import TextGenerationTask
            >>> task = TextGenerationTask(system_prompt="You are a helpful assistant.")
            >>> task.generate_prompt("What are the first 5 Fibonacci numbers?")
            Prompt(system_prompt='You are a helpful assistant.', formatted_prompt='What are the first 5 Fibonacci numbers?')
        """
        system_prompt = self.system_prompt
        if self.principles_distribution is not None:
            principle = self._get_principle()
            system_prompt += " " + principle
        return Prompt(system_prompt=system_prompt, formatted_prompt=input)

    def parse_output(self, output: str) -> Dict[str, str]:
        """Parses the output of the LLM into the desired format."""
        return {"generations": output}

    @property
    def input_args_names(self) -> List[str]:
        """Returns the input args names for the task."""
        return ["input"]

    @property
    def output_args_names(self) -> List[str]:
        """Returns the output args names for the task."""
        return ["generations"]

    def to_argilla_dataset(
        self,
        dataset_row: Dict[str, Any],
        generations_column: Optional[str] = "generations",
    ) -> "FeedbackDataset":
        # First we infer the fields from the input_args_names, but we could also
        # create those manually instead using `rg.TextField(...)`
        fields = infer_fields_from_dataset_row(
            field_names=self.input_args_names + self.output_args_names,
            dataset_row=dataset_row,
        )
        # Then we add a default `RatingQuestion` which asks the users to provide a
        # rating for each of the generations, differing from the scenario where the inputs
        # are the fields and the outputs the ones used to formulate the quesstions. So on,
        # in this scenario we won't have suggestions, as the questions will be related to the
        # combination of inputs and outputs.
        if generations_column is None or generations_column not in dataset_row:
            raise ValueError(
                f"The `generations_column='{generations_column}'` is not present in the dataset"
                f" row. Please provide any of {list(dataset_row.keys())}.",
            )
        questions = []
        for idx in range(1, len(dataset_row[generations_column]) + 1):
            questions.append(
                rg.RatingQuestion(  # type: ignore
                    name=f"{generations_column}-{idx}-rating",
                    title=f"How would you rate the generation at `{generations_column}-{idx}`?",
                    values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                )
            )
        # Finally, we define some metadata properties that can be potentially used
        # while exploring the dataset within Argilla to get more insights on the data.
        metadata_properties = []
        for arg_name in self.input_args_names + self.output_args_names:
            if isinstance(dataset_row[arg_name], list):
                for idx in range(1, len(dataset_row[arg_name]) + 1):
                    metadata_properties.append(
                        rg.IntegerMetadataProperty(name=f"length-{arg_name}-{idx}")  # type: ignore
                    )
            elif isinstance(dataset_row[arg_name], str):
                metadata_properties.append(
                    rg.IntegerMetadataProperty(name=f"length-{arg_name}")  # type: ignore
                )
            else:
                warnings.warn(
                    f"Unsupported input type ({type(dataset_row[arg_name])}), skipping...",
                    UserWarning,
                    stacklevel=2,
                )
        # Then we just return the `FeedbackDataset` with the fields, questions, and metadata properties
        # defined above.
        return rg.FeedbackDataset(
            fields=fields,
            questions=questions,
            metadata_properties=metadata_properties,  # Note that these are always optional
        )

    def to_argilla_record(self, dataset_row: Dict[str, Any]) -> "FeedbackRecord":
        """Converts a dataset row to an Argilla `FeedbackRecord`."""
        # We start off with the fields, which are the inputs of the LLM, but also
        # build the metadata from them, as previously specified within the
        fields, metadata = {}, {}
        for arg_name in self.input_args_names + self.output_args_names:
            arg_value = dataset_row[arg_name]
            if isinstance(arg_value, list):
                for idx, value in enumerate(arg_value, start=1):
                    # TODO: value formatting was included here due to some issues
                    # with `SelfInstructTask` but these list-parsing may not be needed
                    # anymore.
                    value = (
                        value.strip()
                        if isinstance(value, str)
                        else "\n".join(value)
                        if isinstance(value, list)
                        else ""
                    )
                    fields[f"{arg_name}-{idx}"] = value
                    if value is not None:
                        metadata[f"length-{arg_name}-{idx}"] = len(value)
            elif isinstance(arg_value, str):
                fields[arg_name] = arg_value.strip() if arg_value else ""
                if arg_value is not None:
                    metadata[f"length-{arg_name}"] = len(arg_value.strip())
            else:
                warnings.warn(
                    f"Unsupported input type ({type(arg_value)}), skipping...",
                    UserWarning,
                    stacklevel=2,
                )
        # Then we add the model metadata from the `generation_model` and `labelling_model`
        # columns of the dataset, if they exist.
        metadata.update(model_metadata_from_dataset_row(dataset_row=dataset_row))
        # Finally, we return the `FeedbackRecord` with the fields and the metadata
        return rg.FeedbackRecord(fields=fields, metadata=metadata)

input_args_names: List[str] property

Returns the input args names for the task.

output_args_names: List[str] property

Returns the output args names for the task.

__post_init__()

Validates the principles_distribution if it is a dict.

Raises:

Type Description
ValueError

if the principles_distribution is a dict and it does not sum to 1.0.

ValueError

if the principles are not included in the principles_distribution.

Source code in src/distilabel/tasks/text_generation/base.py
def __post_init__(self) -> None:
    """Validates the `principles_distribution` if it is a dict.

    Raises:
        ValueError: if the `principles_distribution` is a dict and it does not sum to 1.0.
        ValueError: if the `principles` are not included in the `principles_distribution`.
    """
    if isinstance(self.principles_distribution, dict):
        not_included_principles = [
            principle
            for principle in self.principles
            if principle not in self.principles_distribution
        ]
        if not_included_principles:
            principles_str = ", ".join(
                [f"'{principle}'" for principle in not_included_principles]
            )
            raise ValueError(
                f"Principles {principles_str} included in `principles` is not in"
                " `principles_distribution`"
            )

        if sum(self.principles_distribution.values()) != 1.0:
            raise ValueError(
                "`principles_distribution` must sum to 1.0 if it is a dict containing"
                " the distribution of principles to use."
            )

generate_prompt(input)

Generates the prompt to be used for generation.

Parameters:

Name Type Description Default
input str

the input to be used for generation.

required

Returns:

Name Type Description
Prompt Prompt

the generated prompt.

Examples:

>>> from distilabel.tasks.text_generation import TextGenerationTask
>>> task = TextGenerationTask(system_prompt="You are a helpful assistant.")
>>> task.generate_prompt("What are the first 5 Fibonacci numbers?")
Prompt(system_prompt='You are a helpful assistant.', formatted_prompt='What are the first 5 Fibonacci numbers?')
Source code in src/distilabel/tasks/text_generation/base.py
def generate_prompt(self, input: str) -> Prompt:
    """Generates the prompt to be used for generation.

    Args:
        input (str): the input to be used for generation.

    Returns:
        Prompt: the generated prompt.

    Examples:
        >>> from distilabel.tasks.text_generation import TextGenerationTask
        >>> task = TextGenerationTask(system_prompt="You are a helpful assistant.")
        >>> task.generate_prompt("What are the first 5 Fibonacci numbers?")
        Prompt(system_prompt='You are a helpful assistant.', formatted_prompt='What are the first 5 Fibonacci numbers?')
    """
    system_prompt = self.system_prompt
    if self.principles_distribution is not None:
        principle = self._get_principle()
        system_prompt += " " + principle
    return Prompt(system_prompt=system_prompt, formatted_prompt=input)

parse_output(output)

Parses the output of the LLM into the desired format.

Source code in src/distilabel/tasks/text_generation/base.py
def parse_output(self, output: str) -> Dict[str, str]:
    """Parses the output of the LLM into the desired format."""
    return {"generations": output}

to_argilla_record(dataset_row)

Converts a dataset row to an Argilla FeedbackRecord.

Source code in src/distilabel/tasks/text_generation/base.py
def to_argilla_record(self, dataset_row: Dict[str, Any]) -> "FeedbackRecord":
    """Converts a dataset row to an Argilla `FeedbackRecord`."""
    # We start off with the fields, which are the inputs of the LLM, but also
    # build the metadata from them, as previously specified within the
    fields, metadata = {}, {}
    for arg_name in self.input_args_names + self.output_args_names:
        arg_value = dataset_row[arg_name]
        if isinstance(arg_value, list):
            for idx, value in enumerate(arg_value, start=1):
                # TODO: value formatting was included here due to some issues
                # with `SelfInstructTask` but these list-parsing may not be needed
                # anymore.
                value = (
                    value.strip()
                    if isinstance(value, str)
                    else "\n".join(value)
                    if isinstance(value, list)
                    else ""
                )
                fields[f"{arg_name}-{idx}"] = value
                if value is not None:
                    metadata[f"length-{arg_name}-{idx}"] = len(value)
        elif isinstance(arg_value, str):
            fields[arg_name] = arg_value.strip() if arg_value else ""
            if arg_value is not None:
                metadata[f"length-{arg_name}"] = len(arg_value.strip())
        else:
            warnings.warn(
                f"Unsupported input type ({type(arg_value)}), skipping...",
                UserWarning,
                stacklevel=2,
            )
    # Then we add the model metadata from the `generation_model` and `labelling_model`
    # columns of the dataset, if they exist.
    metadata.update(model_metadata_from_dataset_row(dataset_row=dataset_row))
    # Finally, we return the `FeedbackRecord` with the fields and the metadata
    return rg.FeedbackRecord(fields=fields, metadata=metadata)