llama_cpp
LlamaCppLLM
Bases: LLM
Source code in src/distilabel/llm/llama_cpp.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
model_name: str
property
Returns the name of the llama-cpp model, which is the same as the model path.
__init__(model, task, max_new_tokens=128, temperature=0.8, top_p=0.95, top_k=40, repeat_penalty=1.1, seed=1337, prompt_format=None, prompt_formatting_fn=None)
Initializes the LlamaCppLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Llama
|
the llama-cpp model to be used. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
temperature |
float
|
the temperature to be used for generation. Defaults to 0.8. |
0.8
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 0.95. |
0.95
|
top_k |
int
|
the top-k value to be used for generation. Defaults to 40. |
40
|
repeat_penalty |
float
|
the repeat penalty to be used for generation. Defaults to 1.1. |
1.1
|
seed |
int
|
the seed to be used for generation, setting it to -1 implies
that a different response will be generated on each generation, similarly to
HuggingFace's |
1337
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Examples:
>>> from llama_cpp import Llama
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import LlamaCppLLM
>>> model = Llama(model_path="path/to/model")
>>> task = Task()
>>> llm = LlamaCppLLM(model=model, task=task)