together
TogetherInferenceLLM
Bases: LLM
Source code in src/distilabel/llm/together.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
available_models: List[str]
cached
property
Returns the list of available models in Together Inference.
model_name: str
property
Returns the name of the Together Inference model.
__init__(task, model, api_key=None, max_new_tokens=128, repetition_penalty=1.0, temperature=1.0, top_p=1.0, top_k=1, stop=None, logprobs=0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
Initializes the OpenAILLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the LLM. |
required |
model |
str
|
the model to be used for generation. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
temperature |
float
|
the temperature to be used for generation. From the Together Inference docs: "A decimal number that determines the degree of randomness in the response. A value of 0 will always yield the same output. A temperature much less than 1 favors more correctness and is appropriate for question answering or summarization. A value approaching 1 introduces more randomness in the output.". Defaults to 1.0. |
1.0
|
repetition_penalty |
float
|
the repetition penalty to be used for generation. From the Together Inference docs: "Controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition.". Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. From the Together Inference docs: "used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. It specifies a probability threshold, below which all less likely tokens are filtered out. This technique helps to maintain diversity and generate more fluent and natural-sounding text.". Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. From the Together Inference docs: "used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options.". Defaults to 1. |
1
|
stop |
List[str]
|
strings to delimitate the generation process, so that when the model generates any of the provided characters, the generation process is considered completed. Defaults to None. |
None
|
logprobs |
int
|
the number of logprobs to be returned for each token. From the Together Inference docs: "An integer that specifies how many top token log probabilities are included in the response for each token generation step.". Defaults to None. |
0
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the provided |
Examples:
>>> from distilabel.tasks.text_generation import TextGenerationTask as Task
>>> from distilabel.llm import TogetherInferenceLLM
>>> task = Task()
>>> llm = TogetherInferenceLLM(model="togethercomputer/llama-2-7b", task=task, prompt_format="llama2")
Source code in src/distilabel/llm/together.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|