self_instruct
SelfInstructTask
dataclass
¶
Bases: TextGenerationTask
A TextGenerationTask
following the Self-Instruct specification for building
the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system_prompt |
str
|
the system prompt to be used. Defaults to |
'You are an expert prompt writer, writing the best and most diverse prompts for a variety of tasks. You are given a task description and a set of instructions for how to write the prompts for an specific AI application.'
|
principles |
Dict[str, List[str]]
|
the principles to be used for the system prompt.
Defaults to |
field(default_factory=lambda : {'harmlessness': harmlessness, 'helpfulness': helpfulness, 'truthfulness': truthfulness, 'honesty': honesty, 'verbalized_calibration': verbalized_calibration}, repr=False)
|
principles_distribution |
Union[Dict[str, float], Literal[balanced], None]
|
the
distribution of principles to be used for the system prompt. Defaults to |
None
|
application_description |
str
|
the description of the AI application. Defaults to "AI assistant". |
'AI assistant'
|
num_instructions |
int
|
the number of instructions to be used for the prompt. Defaults to 5. |
5
|
criteria_for_query_generation |
str
|
the criteria for query generation that we want our model to have. Default value covers default behaviour for SelfInstructTask. This value is passed to the .jinja template, where extra instructions are added to ensure correct output format. |
'Incorporate a diverse range of verbs, avoiding repetition.\nEnsure queries are compatible with AI model\'s text generation functions and are limited to 1-2 sentences.\nDesign queries to be self-contained and standalone.\nBlend interrogative (e.g., "What is the significance of x?") and imperative (e.g., "Detail the process of x.") styles.'
|
References
Source code in src/distilabel/tasks/text_generation/self_instruct.py
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
generate_prompt(input, **_)
¶
Generates a prompt following the Self-Instruct specification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
str
|
the input to be used for the prompt. |
required |
Returns:
Name | Type | Description |
---|---|---|
Prompt |
Prompt
|
the generated prompt. |
Examples:
>>> from distilabel.tasks.text_generation import SelfInstructTask
>>> task = SelfInstructTask(system_prompt="You are a helpful assistant.", num_instructions=2)
>>> task.generate_prompt("What are the first 5 Fibonacci numbers?")
Prompt(
system_prompt="You are a helpful assistant.",
formatted_prompt="# Task Description ...",
)
Source code in src/distilabel/tasks/text_generation/self_instruct.py
parse_output(output)
¶
Parses the output of the model into the desired format.
to_argilla_record(dataset_row, instructions_column='instructions')
¶
Converts a dataset row to a list of Argilla FeedbackRecord
s.