llm
AnyscaleLLM
¶
Bases: OpenAILLM
Source code in src/distilabel/llm/anyscale.py
__init__(model, task, client=None, api_key=None, max_new_tokens=128, frequency_penalty=0.0, presence_penalty=0.0, temperature=1.0, top_p=1.0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the AnyscaleLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str
|
the model to be used for generation. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
client |
Union[OpenAI, None]
|
an OpenAI client to be used for generation.
If |
None
|
api_key |
Union[str, None]
|
the Anyscale API key to be used for generation.
If |
None
|
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
frequency_penalty |
float
|
the frequency penalty to be used for generation. Defaults to 0.0. |
0.0
|
presence_penalty |
float
|
the presence penalty to be used for generation. Defaults to 0.0. |
0.0
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the provided |
Examples:
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import AnyscaleLLM
>>> llm = AnyscaleLLM(model="HuggingFaceH4/zephyr-7b-beta", task=TextGenerationTask())
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/anyscale.py
InferenceEndpointsLLM
¶
Bases: LLM
Source code in src/distilabel/llm/huggingface/inference_endpoints.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
model_name: str
property
¶
Returns the model name of the endpoint.
__init__(endpoint_name_or_model_id, task, endpoint_namespace=None, token=None, max_new_tokens=128, repetition_penalty=None, seed=None, do_sample=False, temperature=None, top_k=None, top_p=None, typical_p=None, stop_sequences=None, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the InferenceEndpointsLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
endpoint_name_or_model_id |
str
|
The name of the endpoint or a Hugging Face Model Id. |
required |
task |
Task
|
The task to be performed by the LLM. |
required |
endpoint_namespace |
Union[str, None]
|
The namespace of the endpoint. Defaults to None. |
None
|
token |
Union[str, None]
|
The token for the endpoint. Defaults to None. |
None
|
max_new_tokens |
int
|
The maximum number of tokens to be generated. Defaults to 128. |
128
|
repetition_penalty |
Union[float, None]
|
The repetition penalty to be used for generation. Defaults to None. |
None
|
seed |
Union[int, None]
|
The seed for generation. Defaults to None. |
None
|
do_sample |
bool
|
Whether to do sampling. Defaults to False. |
False
|
temperature |
Union[float, None]
|
The temperature for generation. Defaults to None. |
None
|
top_k |
Union[int, None]
|
The top_k for generation. Defaults to None. |
None
|
top_p |
Union[float, None]
|
The top_p for generation. Defaults to None. |
None
|
typical_p |
Union[float, None]
|
The typical_p for generation. Defaults to None. |
None
|
stop_sequences |
Union[List[str], None]
|
The stop sequences for generation. Defaults to None. |
None
|
num_threads |
Union[int, None]
|
The number of threads. Defaults to None. |
None
|
prompt_format |
Union[SupportedFormats, None]
|
The format of the prompt. Defaults to None. |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
The function for formatting the prompt. Defaults to None. |
None
|
Examples:
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import InferenceEndpointsLLM
>>> llm = InferenceEndpointsLLM(
... endpoint_name_or_model_id="<MODEL_ID_OR_INFERENCE_ENDPOINT>",
... task=TextGenerationTask(),
... )
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/huggingface/inference_endpoints.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
LLM
¶
Bases: ABC
Source code in src/distilabel/llm/base.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
return_futures: bool
property
¶
Whether the LLM
returns futures
__del__()
¶
__init__(task, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the LLM base class.
Note
This class is intended to be used internally, but you anyone can still create
a subclass, implement the abstractmethod
s and use it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the LLM. |
required |
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union['SupportedFormats', None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Source code in src/distilabel/llm/base.py
generate(inputs, num_generations=1, progress_callback_func=None)
¶
Generates the outputs for the given inputs using the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
List[Dict[str, Any]]
|
the inputs to be used for generation. |
required |
num_generations |
int
|
the number of generations to be performed for each input.
Defaults to |
1
|
progress_callback_func |
Union[Callable, None]
|
a function to be called at each
generation step. Defaults to |
None
|
Returns:
Type | Description |
---|---|
Union[List[List['LLMOutput']], Future[List[List['LLMOutput']]]]
|
Union[List[Future[List["LLMOutput"]]], List[List["LLMOutput"]]]: the generated outputs. |
Source code in src/distilabel/llm/base.py
validate_prompts(inputs, default_format=None)
¶
Generates the prompts to be used for generation, can be used to check the prompts visually.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
List[Dict[str, Any]]
|
The inputs to be used for generation. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The prompts that would be used for the generation. |
Examples:
>>> from distilabel.tasks import TextGenerationTask
>>> llm.validate_prompts([{"input": "Your input"}])[0]
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
I'm valid for text generation task
Source code in src/distilabel/llm/base.py
LLMPool
¶
LLMPool is a class that wraps multiple ProcessLLM
s and performs generation in
parallel using them. Depending on the number of LLM
s and the parameter num_generations
,
the LLMPool
will decide how many generations to perform for each LLM
:
-
If
num_generations
is less than the number ofLLM
s, thennum_generations
LLMs will be chosen randomly and each of them will perform 1 generation. -
If
num_generations
is equal to the number ofLLM
s, then eachLLM
will perform 1 generation. -
If
num_generations
is greater than the number ofLLM
s, then eachLLM
will performnum_generations // num_llms
generations, and the remainingnum_generations % num_llms
generations will be performed bynum_generations % num_llms
randomly chosenLLM
s.
Attributes:
Name | Type | Description |
---|---|---|
llms |
List[ProcessLLM]
|
the |
Source code in src/distilabel/llm/base.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
|
return_futures: bool
property
¶
Whether the LLM
returns futures
task: 'Task'
property
¶
Returns the task that will be used by the ProcessLLM
s of this pool.
Returns:
Name | Type | Description |
---|---|---|
Task |
'Task'
|
the task that will be used by the |
__init__(llms)
¶
Initializes the LLMPool
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
llms |
List[ProcessLLM]
|
the |
required |
Raises:
Type | Description |
---|---|
ValueError
|
if the |
Source code in src/distilabel/llm/base.py
generate(inputs, num_generations=1, progress_callback_func=None)
¶
Generates the outputs for the given inputs using the pool of ProcessLLM
s.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
List[Dict[str, Any]]
|
the inputs to be used for generation. |
required |
num_generations |
int
|
the number of generations to be performed for each input.
Defaults to |
1
|
progress_callback_func |
Union[Callable, None]
|
a function to be called at each
generation step. Defaults to |
None
|
Returns:
Type | Description |
---|---|
List[List['LLMOutput']]
|
Future[List[List["LLMOutput"]]]: the generated outputs as a |
Source code in src/distilabel/llm/base.py
LlamaCppLLM
¶
Bases: LLM
Source code in src/distilabel/llm/llama_cpp.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
model_name: str
property
¶
Returns the name of the llama-cpp model, which is the same as the model path.
__init__(model, task, max_new_tokens=128, temperature=0.8, top_p=0.95, top_k=40, repeat_penalty=1.1, seed=1337, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the LlamaCppLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Llama
|
the llama-cpp model to be used. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
temperature |
float
|
the temperature to be used for generation. Defaults to 0.8. |
0.8
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 0.95. |
0.95
|
top_k |
int
|
the top-k value to be used for generation. Defaults to 40. |
40
|
repeat_penalty |
float
|
the repeat penalty to be used for generation. Defaults to 1.1. |
1.1
|
seed |
int
|
the seed to be used for generation, setting it to -1 implies
that a different response will be generated on each generation, similarly to
HuggingFace's |
1337
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Examples:
>>> from llama_cpp import Llama
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import LlamaCppLLM
>>> model = Llama(model_path="path/to/model")
>>> llm = LlamaCppLLM(model=model, task=TextGenerationTask())
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/llama_cpp.py
MistralAILLM
¶
Bases: LLM
Source code in src/distilabel/llm/mistralai.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
available_models: List[str]
cached
property
¶
Returns the list of available models in MistralAI.
model_name: str
property
¶
Returns the name of the MistralAI model.
__init__(task, model='mistral-medium', client=None, api_key=os.environ.get('MISTRALAI_API_KEY'), max_tokens=128, temperature=1.0, top_p=1.0, seed=None, safe_prompt=False, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the MistralAILLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the LLM. |
required |
model |
str
|
the model to be used for generation. Defaults to "mistral-medium". |
'mistral-medium'
|
client |
MistralClient
|
A MistralClient client to be used for generation. Defaults to None. |
None
|
api_key |
Optional[str]
|
The MistralAI API key to be used for generation. Will try to grab it from the environment variable if not informed. Visit "https://docs.mistral.ai/#api-access" for more information. |
get('MISTRALAI_API_KEY')
|
max_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
seed |
Optional[int]
|
the random seed to use for sampling, e.g. 42. Defaults to None. |
None
|
safe_prompt |
_type_
|
whether to use safe prompt, e.g. True. Defaults to False. Visit "https://docs.mistral.ai/platform/guardrailing/" for more information. |
False
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
AssertionError: if the provided model
is not available in your MistralAI account.
Examples:
>>> import os
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import MistralAILLM
>>> llm = MistralAILLM(model="mistral-medium", task=TextGenerationTask(), api_key=os.getenv("MISTRALAI_API_KEY"))
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/mistralai.py
OllamaLLM
¶
Bases: LLM
Source code in src/distilabel/llm/ollama.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
model_name: str
property
¶
Returns the name of the Ollama model.
__init__(model, task, max_new_tokens=None, temperature=None, top_k=None, top_p=None, mirostat=None, mirostat_eta=None, mirostat_tau=None, num_ctx=None, num_gqa=None, num_gpu=None, num_threads=None, repeat_last_n=None, repeat_penalty=None, seed=None, stop=None, tfs_z=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the OllamaLLM class and aligns with https://github.com/ollama/ollama/blob/main/docs/modelfile.md#valid-parameters-and-values
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str
|
the model to be used for generation. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated.
Defaults to |
None
|
temperature |
float
|
the temperature to be used for generation.
Defaults to |
None
|
top_k |
int
|
the top-k value to be used for generation.
Defaults to |
None
|
top_p |
float
|
the top-p value to be used for generation.
Defaults to |
None
|
mirostat |
int
|
the Mirostat value to enable it or set the version.
Defaults to |
None
|
mirostat_eta |
float
|
the eta value to be used for Mirostat.
Defaults to |
None
|
mirostat_tau |
float
|
the tau value to be used for Mirostat.
Defaults to |
None
|
num_ctx |
int
|
the number of contexts to be used for generation.
Defaults to |
None
|
num_gqa |
int
|
the number of GQA to be used for generation.
Defaults to |
None
|
num_gpu |
int
|
the number of GPUs to be used for generation.
Defaults to |
None
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
repeat_last_n |
Union[int, None]
|
the number of tokens to be used
for RepeatLastN. Defaults to |
None
|
repeat_penalty |
Union[float, None]
|
the penalty to be used for RepeatLastN.
Defaults to |
None
|
seed |
Union[int, None]
|
the seed to be used for generation.
Defaults to |
None
|
stop |
Union[str, None]
|
the stop token to be used for generation. If |
None
|
tfs_z |
Union[float, None]
|
the z value to be used for TFS.
Defaults to |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
if the model is not available. |
ValueError
|
if the Ollama API request failed. |
Examples:
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import OllamaLLM
>>> llm = OllamaLLM(model="notus", task=TextGenerationTask())
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/ollama.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
OpenAILLM
¶
Bases: LLM
Source code in src/distilabel/llm/openai.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
available_models: List[str]
cached
property
¶
Returns the list of available models in your OpenAI account.
model_name: str
property
¶
Returns the name of the OpenAI model.
__init__(task, model='gpt-3.5-turbo', client=None, api_key=None, max_new_tokens=128, frequency_penalty=0.0, presence_penalty=0.0, temperature=1.0, top_p=1.0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the OpenAILLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the LLM. |
required |
model |
str
|
the model to be used for generation. Defaults to "gpt-3.5-turbo". |
'gpt-3.5-turbo'
|
client |
Union[OpenAI, None]
|
an OpenAI client to be used for generation.
If |
None
|
api_key |
Union[str, None]
|
the OpenAI API key to be used for generation.
If |
None
|
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
frequency_penalty |
float
|
the frequency penalty to be used for generation. Defaults to 0.0. |
0.0
|
presence_penalty |
float
|
the presence penalty to be used for generation. Defaults to 0.0. |
0.0
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the provided |
Examples:
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import OpenAILLM
>>> llm = OpenAILLM(model="gpt-3.5-turbo", task=TextGenerationTask())
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/openai.py
ProcessLLM
¶
A class that wraps an LLM
and performs generation in a separate process. The
result is a Future
that will be set when the generation is completed.
This class creates a new child process that will load the LLM
and perform the
text generation. In order to communicate with this child process, a bridge thread
is created in the main process. The bridge thread will send and receive the results
from the child process using multiprocessing.Queue
s. The communication between the
bridge thread and the main process is done using Future
s. This architecture was
inspired by the ProcessPoolExecutor
from the concurrent.futures
module and it's
a simplified version of it.
Source code in src/distilabel/llm/base.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
|
model_name: str
cached
property
¶
Returns the model name of the LLM
once it has been loaded.
return_futures: bool
property
¶
Whether the LLM
returns futures
__init__(task, load_llm_fn)
¶
Initializes the ProcessLLM
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the |
required |
load_llm_fn |
Callable[[Task], LLM]
|
a function that will be executed in the
child process to load the |
required |
Source code in src/distilabel/llm/base.py
generate(inputs, num_generations=1, progress_callback_func=None)
¶
Generates the outputs for the given inputs using the ProcessLLM
and its loaded
LLM
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
List[Dict[str, Any]]
|
the inputs to be used for generation. |
required |
num_generations |
int
|
the number of generations to be performed for each input.
Defaults to |
1
|
progress_callback_func |
Union[Callable, None]
|
a function to be called at each
generation step. Defaults to |
None
|
Returns:
Type | Description |
---|---|
Future[List[List['LLMOutput']]]
|
Future[List[List["LLMOutput"]]]: the generated outputs as a |
Source code in src/distilabel/llm/base.py
teardown()
¶
Stops the bridge thread and the generation process.
Source code in src/distilabel/llm/base.py
TogetherInferenceLLM
¶
Bases: LLM
Source code in src/distilabel/llm/together.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
available_models: List[str]
cached
property
¶
Returns the list of available models in Together Inference.
model_name: str
property
¶
Returns the name of the Together Inference model.
__init__(model, task, api_key=None, max_new_tokens=128, repetition_penalty=1.0, temperature=1.0, top_p=1.0, top_k=1, stop=None, logprobs=0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the TogetherInferenceLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str
|
the model to be used for generation. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
temperature |
float
|
the temperature to be used for generation. From the Together Inference docs: "A decimal number that determines the degree of randomness in the response. A value of 0 will always yield the same output. A temperature much less than 1 favors more correctness and is appropriate for question answering or summarization. A value approaching 1 introduces more randomness in the output.". Defaults to 1.0. |
1.0
|
repetition_penalty |
float
|
the repetition penalty to be used for generation. From the Together Inference docs: "Controls the diversity of generated text by reducing the likelihood of repeated sequences. Higher values decrease repetition.". Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. From the Together Inference docs: "used to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. It specifies a probability threshold, below which all less likely tokens are filtered out. This technique helps to maintain diversity and generate more fluent and natural-sounding text.". Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. From the Together Inference docs: "used to limit the number of choices for the next predicted word or token. It specifies the maximum number of tokens to consider at each step, based on their probability of occurrence. This technique helps to speed up the generation process and can improve the quality of the generated text by focusing on the most likely options.". Defaults to 1. |
1
|
stop |
List[str]
|
strings to delimitate the generation process, so that when the model generates any of the provided characters, the generation process is considered completed. Defaults to None. |
None
|
logprobs |
int
|
the number of logprobs to be returned for each token. From the Together Inference docs: "An integer that specifies how many top token log probabilities are included in the response for each token generation step.". Defaults to None. |
0
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the provided |
Examples:
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import TogetherInferenceLLM
>>> llm = TogetherInferenceLLM(model="togethercomputer/llama-2-7b", task=TextGenerationTask(), prompt_format="llama2")
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/together.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
TransformersLLM
¶
Bases: LLM
Source code in src/distilabel/llm/huggingface/transformers.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
model_name: str
property
¶
Returns the name of the Transformers model.
__init__(model, tokenizer, task, max_new_tokens=128, do_sample=False, temperature=1.0, top_k=50, top_p=1.0, typical_p=1.0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the TransformersLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
PreTrainedModel
|
the model to be used for generation. |
required |
tokenizer |
PreTrainedTokenizer
|
the tokenizer to be used for generation. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
do_sample |
bool
|
whether to sample from the model or not. Defaults to False. |
False
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. Defaults to 50. |
50
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
typical_p |
float
|
the typical-p value to be used for generation. Defaults to 1.0. |
1.0
|
num_threads |
Union[int, None]
|
the number of threads to be used for generation.
If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for formatting the prompts. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
the function to be used
for formatting the prompts. If |
None
|
Examples:
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import TransformersLLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> llm = TransformersLLM(
... model=model,
... tokenizer=tokenizer,
... task=TextGenerationTask(),
... )
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/huggingface/transformers.py
VertexAIEndpointLLM
¶
Bases: LLM
An LLM
which uses a Vertex AI Online prediction endpoint for the generation.
More information about Vertex AI Endpoints can be found here: https://cloud.google.com/vertex-ai/docs/general/deployment#deploy_a_model_to_an_endpoint
Source code in src/distilabel/llm/google/vertexai.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
endpoint_path: str
property
¶
Returns the path of the Vertex AI endpoint to be used for generation.
model_name: str
cached
property
¶
Returns the name of the model used for generation.
__init__(endpoint_id, task, project=None, location='us-central1', generation_kwargs=None, prompt_argument='prompt', num_generations_argument='n', num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the VertexAIEndpointLLM
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
endpoint_id |
str
|
the ID of the Vertex AI endpoint to be used for generation. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
project |
Optional[str]
|
the project to be used for generation. If |
None
|
location |
str
|
the location of the Vertex AI endpoint to be used for generation. Defaults to "us-central1". |
'us-central1'
|
generation_kwargs |
Optional[Dict[str, Any]]
|
the generation parameters
to be used for generation. The name of the parameters will depend on the
Docker image used to deploy the model to the Vertex AI endpoint. Defaults
to |
None
|
prompt_argument |
str
|
the name of the Vertex AI Endpoint key to be used for the prompt. Defaults to "prompt". |
'prompt'
|
num_generations_argument |
str
|
the name of the Vertex AI Endpoint key to be used to specify the number of generations per prompt. Defaults to "n". |
'n'
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Source code in src/distilabel/llm/google/vertexai.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|
VertexAILLM
¶
Bases: LLM
An LLM
which allows to use Google's proprietary models from the Vertex AI APIs:
- Gemini API: https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini
- Codey API: https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
- Text API: https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text
To use the VertexAILLM
is necessary to have configured the Google Cloud authentication
using one of these methods:
- Setting
GOOGLE_CLOUD_CREDENTIALS
environment variable - Using
gcloud auth application-default login
command - Using
vertexai.init
function from thegoogle-cloud-aiplatform
library
Source code in src/distilabel/llm/google/vertexai.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
|
model_name: str
property
¶
Returns the name of the model used for generation.
__init__(task, model='gemini-pro', temperature=None, top_p=None, top_k=None, max_new_tokens=128, stop_sequences=None, num_threads=None)
¶
Initializes the VertexGenerativeModelLLM
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
task |
Task
|
the task to be performed by the LLM. |
required |
model |
str
|
the model to be used for generation. Defaults to "gemini-pro". |
'gemini-pro'
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
None
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
None
|
top_k |
int
|
the top-k value to be used for generation. Defaults to 40. |
None
|
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
Source code in src/distilabel/llm/google/vertexai.py
vLLM
¶
Bases: LLM
Source code in src/distilabel/llm/vllm.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
model_name: str
property
¶
Returns the name of the vLLM model.
__init__(model, task, max_new_tokens=128, presence_penalty=0.0, frequency_penalty=0.0, temperature=1.0, top_p=1.0, top_k=-1, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the vLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
LLM
|
the vLLM model to be used. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
presence_penalty |
float
|
the presence penalty to be used for generation. Defaults to 0.0. |
0.0
|
frequency_penalty |
float
|
the frequency penalty to be used for generation. Defaults to 0.0. |
0.0
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. Defaults to -1. |
-1
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Examples:
>>> from vllm import LLM
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import vLLM
>>> model = LLM(model="gpt2")
>>> llm = vLLM(model=model, task=TextGenerationTask())
>>> llm.generate([{"input": "What's the capital of Spain?"}])