vllm
vLLM
¶
Bases: LLM
Source code in src/distilabel/llm/vllm.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
model_name: str
property
¶
Returns the name of the vLLM model.
__init__(model, task, max_new_tokens=128, presence_penalty=0.0, frequency_penalty=0.0, temperature=1.0, top_p=1.0, top_k=-1, num_threads=None, prompt_format=None, prompt_formatting_fn=None)
¶
Initializes the vLLM class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
LLM
|
the vLLM model to be used. |
required |
task |
Task
|
the task to be performed by the LLM. |
required |
max_new_tokens |
int
|
the maximum number of tokens to be generated. Defaults to 128. |
128
|
presence_penalty |
float
|
the presence penalty to be used for generation. Defaults to 0.0. |
0.0
|
frequency_penalty |
float
|
the frequency penalty to be used for generation. Defaults to 0.0. |
0.0
|
temperature |
float
|
the temperature to be used for generation. Defaults to 1.0. |
1.0
|
top_p |
float
|
the top-p value to be used for generation. Defaults to 1.0. |
1.0
|
top_k |
int
|
the top-k value to be used for generation. Defaults to -1. |
-1
|
num_threads |
Union[int, None]
|
the number of threads to be used
for parallel generation. If |
None
|
prompt_format |
Union[SupportedFormats, None]
|
the format to be used
for the prompt. If |
None
|
prompt_formatting_fn |
Union[Callable[..., str], None]
|
a function to be
applied to the prompt before generation. If |
None
|
Examples:
>>> from vllm import LLM
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import vLLM
>>> model = LLM(model="gpt2")
>>> llm = vLLM(model=model, task=TextGenerationTask())
>>> llm.generate([{"input": "What's the capital of Spain?"}])