self_instruct
SelfInstructTask
dataclass
¶
Bases: InstructTaskMixin
, TextGenerationTask
A TextGenerationTask
following the Self-Instruct specification for building
the prompts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system_prompt |
str
|
the system prompt to be used. Defaults to |
'You are an expert prompt writer, writing the best and most diverse prompts for a variety of tasks. You are given a task description and a set of instructions for how to write the prompts for an specific AI application.'
|
principles |
Dict[str, List[str]]
|
the principles to be used for the system prompt.
Defaults to |
field(default_factory=lambda : {'harmlessness': harmlessness, 'helpfulness': helpfulness, 'truthfulness': truthfulness, 'honesty': honesty, 'verbalized_calibration': verbalized_calibration}, repr=False)
|
principles_distribution |
Union[Dict[str, float], Literal[balanced], None]
|
the
distribution of principles to be used for the system prompt. Defaults to |
None
|
application_description |
str
|
the description of the AI application. Defaults to "AI assistant". |
'AI assistant'
|
num_instructions |
int
|
the number of instructions to be used for the prompt. Defaults to 5. |
5
|
criteria_for_query_generation |
str
|
the criteria for query generation that we want our model to have. Default value covers default behaviour for SelfInstructTask. This value is passed to the .jinja template, where extra instructions are added to ensure correct output format. |
'Incorporate a diverse range of verbs, avoiding repetition.\nEnsure queries are compatible with AI model\'s text generation functions and are limited to 1-2 sentences.\nDesign queries to be self-contained and standalone.\nBlend interrogative (e.g., "What is the significance of x?") and imperative (e.g., "Detail the process of x.") styles.'
|
References
Source code in src/distilabel/tasks/text_generation/self_instruct.py
generate_prompt(input, **_)
¶
Generates a prompt following the Self-Instruct specification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
str
|
the input to be used for the prompt. |
required |
Returns:
Name | Type | Description |
---|---|---|
Prompt |
Prompt
|
the generated prompt. |
Examples:
>>> from distilabel.tasks.text_generation import SelfInstructTask
>>> task = SelfInstructTask(system_prompt="You are a helpful assistant.", num_instructions=2)
>>> task.generate_prompt("What are the first 5 Fibonacci numbers?")
Prompt(
system_prompt="You are a helpful assistant.",
formatted_prompt="# Task Description ...",
)
Source code in src/distilabel/tasks/text_generation/self_instruct.py
parse_output(output)
¶
Parses the output of the model into the desired format.