Skip to content

transformers

TransformersLLM

Bases: LLM

Source code in src/distilabel/llm/huggingface/transformers.py
class TransformersLLM(LLM):
    def __init__(
        self,
        model: "PreTrainedModel",
        tokenizer: "PreTrainedTokenizer",
        task: "Task",
        max_new_tokens: int = 128,
        do_sample: bool = False,
        temperature: float = 1.0,
        top_k: int = 50,
        top_p: float = 1.0,
        typical_p: float = 1.0,
        num_threads: Union[int, None] = None,
        prompt_format: Union["SupportedFormats", None] = None,
        prompt_formatting_fn: Union[Callable[..., str], None] = None,
    ) -> None:
        """Initializes the TransformersLLM class.

        Args:
            model (PreTrainedModel): the model to be used for generation.
            tokenizer (PreTrainedTokenizer): the tokenizer to be used for generation.
            task (Task): the task to be performed by the LLM.
            max_new_tokens (int, optional): the maximum number of tokens to be generated.
                Defaults to 128.
            do_sample (bool, optional): whether to sample from the model or not.
                Defaults to False.
            temperature (float, optional): the temperature to be used for generation.
                Defaults to 1.0.
            top_k (int, optional): the top-k value to be used for generation.
                Defaults to 50.
            top_p (float, optional): the top-p value to be used for generation.
                Defaults to 1.0.
            typical_p (float, optional): the typical-p value to be used for generation.
                Defaults to 1.0.
            num_threads (Union[int, None], optional): the number of threads to be used for generation.
                If `None`, the number of threads will be set to the number of available CPUs.
                Defaults to `None`.
            prompt_format (Union[SupportedFormats, None], optional): the format to be used
                for formatting the prompts. If `None`, the prompts will not be formatted.
                Defaults to `None`.
            prompt_formatting_fn (Union[Callable[..., str], None], optional): the function to be used
                for formatting the prompts. If `None`, the prompts will not be formatted.

        Examples:
            >>> from transformers import AutoModelForCausalLM, AutoTokenizer
            >>> from distilabel.tasks import TextGenerationTask
            >>> from distilabel.llm import TransformersLLM
            >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
            >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
            >>> llm = TransformersLLM(
            ...     model=model,
            ...     tokenizer=tokenizer,
            ...     task=TextGenerationTask(),
            ... )
            >>> llm.generate([{"input": "What's the capital of Spain?"}])
        """
        super().__init__(
            task=task,
            num_threads=num_threads,
            prompt_format=prompt_format,
            prompt_formatting_fn=prompt_formatting_fn,
        )

        self.max_new_tokens = max_new_tokens
        self.do_sample = do_sample
        self.temperature = temperature
        self.top_k = top_k
        self.top_p = top_p
        self.typical_p = typical_p

        self.model = model
        self.tokenizer = tokenizer

        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        if (
            hasattr(self.tokenizer, "use_default_system_prompt")
            and self.tokenizer.use_default_system_prompt  # type: ignore
        ):
            # The `tokenizer` also has a method named `apply_chat_template` that expects a `Conversation` as OpenAI does with the ChatML format
            warnings.warn(
                "The provided `tokenizer` has `use_default_system_prompt=True` which means that the default system prompt will be used, which may collide with the `task` provided as an arg to this class.",
                UserWarning,
                stacklevel=2,
            )

    def __rich_repr__(self) -> Generator[Any, None, None]:
        yield from super().__rich_repr__()
        yield (
            "parameters",
            {
                "max_new_tokens": self.max_new_tokens,
                "do_sample": self.do_sample,
                "temperature": self.temperature,
                "top_k": self.top_k,
                "top_p": self.top_p,
                "typical_p": self.typical_p,
            },
        )

    @property
    def model_name(self) -> str:
        """Returns the name of the Transformers model."""
        return self.model.config.name_or_path

    def _generate(
        self, inputs: List[Dict[str, Any]], num_generations: int = 1
    ) -> List[List[LLMOutput]]:
        """Generates `num_generations` for each input in `inputs`.

        Args:
            inputs (List[Dict[str, Any]]): the inputs to be used for generation.
            num_generations (int, optional): the number of generations to be performed for each
                input. Defaults to 1.

        Returns:
            List[List[LLMOutput]]: the outputs of the LLM.
        """
        prompts = self._generate_prompts(inputs, default_format=None)
        encodings = self.tokenizer(prompts, padding=True, return_tensors="pt")
        encodings = encodings.to(self.model.device)
        with torch.inference_mode():
            generated_ids = self.model.generate(
                **encodings,  # type: ignore
                pad_token_id=self.tokenizer.eos_token_id,
                generation_config=GenerationConfig(
                    do_sample=self.do_sample,
                    temperature=self.temperature,
                    max_new_tokens=self.max_new_tokens,
                    top_k=self.top_k,
                    top_p=self.top_p,
                    typical_p=self.typical_p,
                    num_return_sequences=num_generations,
                ),
            )
        raw_outputs = self.tokenizer.batch_decode(
            generated_ids[:, encodings.input_ids.shape[1] :],
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True,
        )
        outputs = []
        for prompt, i in zip(prompts, range(0, len(raw_outputs), num_generations)):
            output = []
            for raw_output in raw_outputs[i : i + num_generations]:
                try:
                    parsed_output = self.task.parse_output(raw_output)
                except Exception as e:
                    logger.error(f"Error parsing Transformers output: {e}")
                    parsed_output = None
                output.append(
                    LLMOutput(
                        model_name=self.model_name,
                        prompt_used=prompt,
                        raw_output=raw_output,
                        parsed_output=parsed_output,
                    )
                )
            outputs.append(output)
        return outputs

model_name: str property

Returns the name of the Transformers model.

__init__(model, tokenizer, task, max_new_tokens=128, do_sample=False, temperature=1.0, top_k=50, top_p=1.0, typical_p=1.0, num_threads=None, prompt_format=None, prompt_formatting_fn=None)

Initializes the TransformersLLM class.

Parameters:

Name Type Description Default
model PreTrainedModel

the model to be used for generation.

required
tokenizer PreTrainedTokenizer

the tokenizer to be used for generation.

required
task Task

the task to be performed by the LLM.

required
max_new_tokens int

the maximum number of tokens to be generated. Defaults to 128.

128
do_sample bool

whether to sample from the model or not. Defaults to False.

False
temperature float

the temperature to be used for generation. Defaults to 1.0.

1.0
top_k int

the top-k value to be used for generation. Defaults to 50.

50
top_p float

the top-p value to be used for generation. Defaults to 1.0.

1.0
typical_p float

the typical-p value to be used for generation. Defaults to 1.0.

1.0
num_threads Union[int, None]

the number of threads to be used for generation. If None, the number of threads will be set to the number of available CPUs. Defaults to None.

None
prompt_format Union[SupportedFormats, None]

the format to be used for formatting the prompts. If None, the prompts will not be formatted. Defaults to None.

None
prompt_formatting_fn Union[Callable[..., str], None]

the function to be used for formatting the prompts. If None, the prompts will not be formatted.

None

Examples:

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from distilabel.tasks import TextGenerationTask
>>> from distilabel.llm import TransformersLLM
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> llm = TransformersLLM(
...     model=model,
...     tokenizer=tokenizer,
...     task=TextGenerationTask(),
... )
>>> llm.generate([{"input": "What's the capital of Spain?"}])
Source code in src/distilabel/llm/huggingface/transformers.py
def __init__(
    self,
    model: "PreTrainedModel",
    tokenizer: "PreTrainedTokenizer",
    task: "Task",
    max_new_tokens: int = 128,
    do_sample: bool = False,
    temperature: float = 1.0,
    top_k: int = 50,
    top_p: float = 1.0,
    typical_p: float = 1.0,
    num_threads: Union[int, None] = None,
    prompt_format: Union["SupportedFormats", None] = None,
    prompt_formatting_fn: Union[Callable[..., str], None] = None,
) -> None:
    """Initializes the TransformersLLM class.

    Args:
        model (PreTrainedModel): the model to be used for generation.
        tokenizer (PreTrainedTokenizer): the tokenizer to be used for generation.
        task (Task): the task to be performed by the LLM.
        max_new_tokens (int, optional): the maximum number of tokens to be generated.
            Defaults to 128.
        do_sample (bool, optional): whether to sample from the model or not.
            Defaults to False.
        temperature (float, optional): the temperature to be used for generation.
            Defaults to 1.0.
        top_k (int, optional): the top-k value to be used for generation.
            Defaults to 50.
        top_p (float, optional): the top-p value to be used for generation.
            Defaults to 1.0.
        typical_p (float, optional): the typical-p value to be used for generation.
            Defaults to 1.0.
        num_threads (Union[int, None], optional): the number of threads to be used for generation.
            If `None`, the number of threads will be set to the number of available CPUs.
            Defaults to `None`.
        prompt_format (Union[SupportedFormats, None], optional): the format to be used
            for formatting the prompts. If `None`, the prompts will not be formatted.
            Defaults to `None`.
        prompt_formatting_fn (Union[Callable[..., str], None], optional): the function to be used
            for formatting the prompts. If `None`, the prompts will not be formatted.

    Examples:
        >>> from transformers import AutoModelForCausalLM, AutoTokenizer
        >>> from distilabel.tasks import TextGenerationTask
        >>> from distilabel.llm import TransformersLLM
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> llm = TransformersLLM(
        ...     model=model,
        ...     tokenizer=tokenizer,
        ...     task=TextGenerationTask(),
        ... )
        >>> llm.generate([{"input": "What's the capital of Spain?"}])
    """
    super().__init__(
        task=task,
        num_threads=num_threads,
        prompt_format=prompt_format,
        prompt_formatting_fn=prompt_formatting_fn,
    )

    self.max_new_tokens = max_new_tokens
    self.do_sample = do_sample
    self.temperature = temperature
    self.top_k = top_k
    self.top_p = top_p
    self.typical_p = typical_p

    self.model = model
    self.tokenizer = tokenizer

    if self.tokenizer.pad_token is None:
        self.tokenizer.pad_token = self.tokenizer.eos_token
    if (
        hasattr(self.tokenizer, "use_default_system_prompt")
        and self.tokenizer.use_default_system_prompt  # type: ignore
    ):
        # The `tokenizer` also has a method named `apply_chat_template` that expects a `Conversation` as OpenAI does with the ChatML format
        warnings.warn(
            "The provided `tokenizer` has `use_default_system_prompt=True` which means that the default system prompt will be used, which may collide with the `task` provided as an arg to this class.",
            UserWarning,
            stacklevel=2,
        )