Index
ChatType = List[ChatItem]
module-attribute
¶
ChatType is a type alias for a list
of dict
s following the OpenAI conversational format.
ComplexityScorer
¶
Bases: Task
This task is used to rank a list of instructions based on their complexity. It's an implementation of the complexity score task from the paper 'What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning'.
Attributes:
Name | Type | Description |
---|---|---|
_template |
Union[Template, None]
|
The Jinja2 template used to format the input data. |
Input columns
- instructions (
List[str]
): The list of instructions to be scored.
Output columns
- complexity_score (
List[float]
): The complexity score for each instruction.
Source code in src/distilabel/steps/tasks/complexity_scorer.py
EvolComplexity
¶
Bases: EvolInstruct
EvolComplexity is a task that evolves instructions to make them more complex, and it is based in the EvolInstruct task, but using slight different prompts, but the exact same evolutionary approach.
Attributes:
Name | Type | Description |
---|---|---|
num_instructions |
The number of instructions to be generated. |
|
generate_answers |
Whether to generate answers for the instructions or not. Defaults
to |
|
mutation_templates |
Dict[str, str]
|
The mutation templates to be used for the generation of the instructions. |
min_length |
Dict[str, str]
|
Defines the length (in bytes) that the generated instruction needs to
be higher than, to be considered valid. Defaults to |
max_length |
Dict[str, str]
|
Defines the length (in bytes) that the generated instruction needs to
be lower than, to be considered valid. Defaults to |
seed |
Dict[str, str]
|
The seed to be set for |
Runtime parameters
min_length
: Defines the length (in bytes) that the generated instruction needs to be higher than, to be considered valid.max_length
: Defines the length (in bytes) that the generated instruction needs to be lower than, to be considered valid.seed
: The number of evolutions to be run.
Input columns
- instruction (
str
): The instruction to evolve.
Output columns
- evolved_instruction (
str
): The evolved instruction. - answer (
str
, optional): The answer to the instruction ifgenerate_answers=True
. - model_name (
str
): The name of the LLM used to evolve the instructions.
References
Source code in src/distilabel/steps/tasks/evol_instruct/evol_complexity/base.py
EvolComplexityGenerator
¶
Bases: EvolInstructGenerator
EvolComplexity is a task that evolves instructions to make them more complex, and it is based in the EvolInstruct task, but using slight different prompts, but the exact same evolutionary approach.
Attributes:
Name | Type | Description |
---|---|---|
num_instructions |
The number of instructions to be generated. |
|
generate_answers |
Whether to generate answers for the instructions or not. Defaults
to |
|
mutation_templates |
Dict[str, str]
|
The mutation templates to be used for the generation of the instructions. |
min_length |
Dict[str, str]
|
Defines the length (in bytes) that the generated instruction needs to
be higher than, to be considered valid. Defaults to |
max_length |
Dict[str, str]
|
Defines the length (in bytes) that the generated instruction needs to
be lower than, to be considered valid. Defaults to |
seed |
Dict[str, str]
|
The seed to be set for |
Runtime parameters
min_length
: Defines the length (in bytes) that the generated instruction needs to be higher than, to be considered valid.max_length
: Defines the length (in bytes) that the generated instruction needs to be lower than, to be considered valid.seed
: The number of evolutions to be run.
Input columns
- instruction (
str
): The instruction to evolve.
Output columns
- instruction (
str
): The evolved instruction. - answer (
str
, optional): The answer to the instruction ifgenerate_answers=True
. - model_name (
str
): The name of the LLM used to evolve the instructions.
References
Source code in src/distilabel/steps/tasks/evol_instruct/evol_complexity/generator.py
EvolInstruct
¶
Bases: Task
WizardLM: Empowering Large Language Models to Follow Complex Instructions
Attributes:
Name | Type | Description |
---|---|---|
num_evolutions |
int
|
The number of evolutions to be performed. |
store_evolutions |
bool
|
Whether to store all the evolutions or just the last one. Defaults
to |
generate_answers |
bool
|
Whether to generate answers for the evolved instructions. Defaults
to |
include_original_instruction |
bool
|
Whether to include the original instruction in the
|
mutation_templates |
Dict[str, str]
|
The mutation templates to be used for evolving the instructions.
Defaults to the ones provided in the |
seed |
RuntimeParameter[int]
|
The seed to be set for |
Runtime parameters
seed
: The seed to be set fornumpy
in order to randomly pick a mutation method.
Input columns
- instruction (
str
): The instruction to evolve.
Output columns
- evolved_instruction (
str
): The evolved instruction ifstore_evolutions=False
. - evolved_instructions (
List[str]
): The evolved instructions ifstore_evolutions=True
. - model_name (
str
): The name of the LLM used to evolve the instructions. - answer (
str
): The answer to the evolved instruction ifgenerate_answers=True
andstore_evolutions=False
. - answers (
List[str]
): The answers to the evolved instructions ifgenerate_answers=True
andstore_evolutions=True
.
References
Source code in src/distilabel/steps/tasks/evol_instruct/base.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
inputs: List[str]
property
¶
The input for the task is the instruction
.
mutation_templates_names: List[str]
property
¶
Returns the names i.e. keys of the provided mutation_templates
.
outputs: List[str]
property
¶
The output for the task are the evolved_instruction/s
, the answer
if generate_answers=True
and the model_name
.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation. And the
system_prompt
is added as the first message if it exists.
Source code in src/distilabel/steps/tasks/evol_instruct/base.py
format_output(instructions, answers=None)
¶
The output for the task is a dict with: evolved_instruction
or evolved_instructions
,
depending whether the value is either False
or True
for store_evolutions
, respectively;
answer
if generate_answers=True
; and, finally, the model_name
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instructions |
Union[str, List[str]]
|
The instructions to be included within the output. |
required |
answers |
Optional[List[str]]
|
The answers to be included within the output if |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
If |
Dict[str, Any]
|
if |
Dict[str, Any]
|
if |
Dict[str, Any]
|
if |
Source code in src/distilabel/steps/tasks/evol_instruct/base.py
process(inputs)
¶
Processes the inputs of the task and generates the outputs using the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Yields:
Type | Description |
---|---|
StepOutput
|
A list of Python dictionaries with the outputs of the task. |
Source code in src/distilabel/steps/tasks/evol_instruct/base.py
EvolInstructGenerator
¶
Bases: GeneratorTask
WizardLM: Empowering Large Language Models to Follow Complex Instructions
Attributes:
Name | Type | Description |
---|---|---|
num_instructions |
int
|
The number of instructions to be generated. |
generate_answers |
bool
|
Whether to generate answers for the instructions or not. Defaults
to |
mutation_templates |
Dict[str, str]
|
The mutation templates to be used for the generation of the instructions. |
min_length |
RuntimeParameter[int]
|
Defines the length (in bytes) that the generated instruction needs to
be higher than, to be considered valid. Defaults to |
max_length |
RuntimeParameter[int]
|
Defines the length (in bytes) that the generated instruction needs to
be lower than, to be considered valid. Defaults to |
seed |
RuntimeParameter[int]
|
The seed to be set for |
Runtime parameters
min_length
: Defines the length (in bytes) that the generated instruction needs to be higher than, to be considered valid.max_length
: Defines the length (in bytes) that the generated instruction needs to be lower than, to be considered valid.seed
: The seed to be set fornumpy
in order to randomly pick a mutation method.
Output columns
- instruction (
str
): The generated instruction ifgenerate_answers=False
. - answer (
str
): The generated answer ifgenerate_answers=True
. - instructions (
List[str]
): The generated instructions ifgenerate_answers=True
. - model_name (
str
): The name of the LLM used to generate and evolve the instructions.
References
Source code in src/distilabel/steps/tasks/evol_instruct/generator.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
mutation_templates_names: List[str]
property
¶
Returns the names i.e. keys of the provided mutation_templates
.
outputs: List[str]
property
¶
The output for the task are the instruction
, the answer
if generate_answers=True
and the model_name
.
format_output(instruction, answer=None)
¶
The output for the task is a dict with: instruction
; answer
if generate_answers=True
;
and, finally, the model_name
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instruction |
str
|
The instruction to be included within the output. |
required |
answer |
Optional[str]
|
The answer to be included within the output if |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
If |
Dict[str, Any]
|
if |
Source code in src/distilabel/steps/tasks/evol_instruct/generator.py
model_post_init(__context)
¶
Override this method to perform additional initialization after __init__
and model_construct
.
This is useful if you want to do some validation that requires the entire model to be initialized.
Source code in src/distilabel/steps/tasks/evol_instruct/generator.py
process(offset=0)
¶
Processes the inputs of the task and generates the outputs using the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
offset |
int
|
The offset to start the generation from. Defaults to 0. |
0
|
Yields:
Type | Description |
---|---|
GeneratorStepOutput
|
A list of Python dictionaries with the outputs of the task, and a boolean |
GeneratorStepOutput
|
flag indicating whether the task has finished or not i.e. is the last batch. |
Source code in src/distilabel/steps/tasks/evol_instruct/generator.py
EvolQuality
¶
Bases: Task
The EvolQuality
task is used to evolve the quality of the responses given a prompt,
by generating a new response with a language model. This step implements the evolution
quality task from the paper 'What Makes Good Data for Alignment? A Comprehensive Study of
Automatic Data Selection in Instruction Tuning'.
Attributes:
Name | Type | Description |
---|---|---|
num_evolutions |
int
|
The number of evolutions to be performed on the responses. |
store_evolutions |
bool
|
Whether to store all the evolved responses or just the last one.
Defaults to |
include_original_response |
bool
|
Whether to include the original response within the evolved
responses. Defaults to |
mutation_templates |
Dict[str, str]
|
The mutation templates to be used to evolve the responses. |
seed |
RuntimeParameter[int]
|
The seed to be set for |
Runtime parameters
seed
: The seed to be set fornumpy
in order to randomly pick a mutation method.
Input columns
- instruction (
str
): The instruction that was used to generate theresponses
. - response (
str
): The responses to be rewritten.
Output columns
- evolved_response (
str
): The evolved response ifstore_evolutions=False
. - evolved_responses (
List[str]
): The evolved responses ifstore_evolutions=True
. - model_name (
str
): The name of the LLM used to evolve the responses.
Source code in src/distilabel/steps/tasks/evol_quality/base.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
inputs: List[str]
property
¶
The input for the task are the instruction
and response
.
mutation_templates_names: List[str]
property
¶
Returns the names i.e. keys of the provided mutation_templates
enum.
outputs: List[str]
property
¶
The output for the task are the evolved_response/s
and the model_name
.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation. And the
system_prompt
is added as the first message if it exists.
Source code in src/distilabel/steps/tasks/evol_quality/base.py
format_output(responses)
¶
The output for the task is a dict with: evolved_response
or evolved_responses
,
depending whether the value is either False
or True
for store_evolutions
, respectively;
and, finally, the model_name
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
responses |
Union[str, List[str]]
|
The responses to be included within the output. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
if |
Dict[str, Any]
|
if |
Source code in src/distilabel/steps/tasks/evol_quality/base.py
model_post_init(__context)
¶
Override this method to perform additional initialization after __init__
and model_construct
.
This is useful if you want to do some validation that requires the entire model to be initialized.
Source code in src/distilabel/steps/tasks/evol_quality/base.py
process(inputs)
¶
Processes the inputs of the task and generates the outputs using the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Returns:
Type | Description |
---|---|
StepOutput
|
A list of Python dictionaries with the outputs of the task. |
Source code in src/distilabel/steps/tasks/evol_quality/base.py
GenerateEmbeddings
¶
Bases: Step
Generate embeddings for a text input using the last hidden state of an LLM
, as
described in the paper 'What Makes Good Data for Alignment? A Comprehensive Study of
Automatic Data Selection in Instruction Tuning'.
Attributes:
Name | Type | Description |
---|---|---|
llm |
LLM
|
The |
Input columns
- text (
str
,List[Dict[str, str]]
): The input text or conversation to generate embeddings for.
Output columns
- embedding (
List[float]
): The embedding of the input text or conversation.
Source code in src/distilabel/steps/tasks/generate_embeddings.py
inputs: List[str]
property
¶
The inputs for the task is a text
column containing either a string or a
list of dictionaries in OpenAI chat-like format.
outputs: List[str]
property
¶
The outputs for the task is an embedding
column containing the embedding of
the text
input.
format_input(input)
¶
Formats the input to be used by the LLM to generate the embeddings. The input
can be in ChatType
format or a string. If a string, it will be converted to a
list of dictionaries in OpenAI chat-like format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Dict[str, Any]
|
The input to format. |
required |
Returns:
Type | Description |
---|---|
ChatType
|
The OpenAI chat-like format of the input. |
Source code in src/distilabel/steps/tasks/generate_embeddings.py
load()
¶
process(inputs)
¶
Generates an embedding for each input using the last hidden state of the LLM
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Yields:
Type | Description |
---|---|
StepOutput
|
A list of Python dictionaries with the outputs of the task. |
Source code in src/distilabel/steps/tasks/generate_embeddings.py
GeneratorTask
¶
Bases: _Task
, GeneratorStep
GeneratorTask is a class that implements the _Task
abstract class and adds the
GeneratorStep
interface to be used as a step in the pipeline.
Attributes:
Name | Type | Description |
---|---|---|
llm |
the |
|
group_generations |
whether to group the |
|
num_generations |
The number of generations to be produced per input. |
Source code in src/distilabel/steps/tasks/base.py
InstructionBacktranslation
¶
Bases: Task
Self-Alignment with Instruction Backtranslation.
Attributes:
Name | Type | Description |
---|---|---|
_template |
Optional[Template]
|
the Jinja2 template to use for the Instruction Backtranslation task. |
Input columns
- instruction (
str
): The reference instruction to evaluate the text output. - generation (
str
): The text output to evaluate for the given instruction.
Output columns
- score (
str
): The score for the generation based on the given instruction.
Source code in src/distilabel/steps/tasks/instruction_backtranslation.py
inputs: List[str]
property
¶
The input for the task is the instruction
, and the generation
for it.
outputs: List[str]
property
¶
The output for the task is the score
, reason
and the model_name
.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation.
Source code in src/distilabel/steps/tasks/instruction_backtranslation.py
format_output(output, input)
¶
The output is formatted as a dictionary with the score
and reason
. The
model_name
will be automatically included within the process
method of Task
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output |
Union[str, None]
|
a string representing the output of the LLM via the |
required |
input |
Dict[str, Any]
|
the input to the task, as required by some tasks to format the output. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
A dictionary containing the |
Source code in src/distilabel/steps/tasks/instruction_backtranslation.py
load()
¶
Loads the Jinja2 template with the Instruction Backtranslation prompt.
Source code in src/distilabel/steps/tasks/instruction_backtranslation.py
PairRM
¶
Bases: Step
Rank the candidates based on the input using the LLM
model.
Attributes:
Name | Type | Description |
---|---|---|
model |
str
|
The model to use for the ranking. Defaults to |
input_batch_size |
int
|
The batch size to use when processing the input. Defaults to |
instructions |
Optional[str]
|
The instructions to use for the model. Defaults to |
Input columns
- inputs (
List[Dict[str, Any]]
): The input text or conversation to rank the candidates for. - candidates (
List[Dict[str, Any]]
): The candidates to rank.
Output columns
- ranks (
List[int]
): The ranks of the candidates based on the input. - ranked_candidates (
List[Dict[str, Any]]
): The candidates ranked based on the input.
References
Note
This step differs to other tasks as there is a single implementation of this model
currently, and we will use a specific LLM
.
Source code in src/distilabel/steps/tasks/pair_rm.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
inputs: List[str]
property
¶
The input columns correspond to the two required arguments from Blender.rank
:
inputs
and candidates
.
outputs: List[str]
property
¶
The outputs will include the ranks
and the ranked_candidates
.
format_input(input)
¶
The input is expected to be a dictionary with the keys input
and candidates
,
where the input
corresponds to the instruction of a model and candidates
are a
list of responses to be ranked.
Source code in src/distilabel/steps/tasks/pair_rm.py
process(inputs)
¶
Generates the ranks for the candidates based on the input.
The ranks are the positions of the candidates, where lower is better, and the ranked candidates correspond to the candidates sorted according to the ranks obtained.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Yields:
Type | Description |
---|---|
StepOutput
|
An iterator with the inputs containing the |
Source code in src/distilabel/steps/tasks/pair_rm.py
QualityScorer
¶
Bases: Task
QualityScorer is a pre-defined task that defines the instruction
as the input
and score
as the output. This task is used to rate the quality of instructions and responses.
It's an implementation of the quality score task from the paper 'What Makes Good Data
for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning'.
The task follows the same scheme as the Complexity Scorer, but the instruction-response pairs
are scored in terms of quality, obtaining a quality score for each instruction.
Attributes:
Name | Type | Description |
---|---|---|
_template |
Union[Template, None]
|
a Jinja2 template used to format the input for the LLM. |
Input columns
- instruction (
str
): The instruction that was used to generate theresponses
. - responses (
List[str]
): The responses to be scored. Each response forms a pair with the instruction.
Output columns
- quality_score (
List[float]
): The quality score for each instruction.
Source code in src/distilabel/steps/tasks/quality_scorer.py
inputs: List[str]
property
¶
The input for the task are instruction
and responses
.
outputs
property
¶
The output for the task is a list of quality_scores
containing the quality score for each
response in responses
.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation.
Source code in src/distilabel/steps/tasks/quality_scorer.py
format_output(output, input)
¶
The output is formatted as a list with the score of each instruction-response pair.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output |
Union[str, None]
|
the raw output of the LLM. |
required |
input |
Dict[str, Any]
|
the input to the task. Used for obtaining the number of responses. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
A dict with containing the scores for each instruction-response pair. |
Source code in src/distilabel/steps/tasks/quality_scorer.py
SelfInstruct
¶
Bases: Task
SelfInstruct is a pre-defined task that, given a number of instructions, a certain criteria for query generations, an application description, and an input, generates a number of instruction related to the given input and following what is stated in the criteria for query generation and the application description. It is based in the SelfInstruct framework from the paper "Self-Instruct: Aligning Language Models with Self-Generated Instructions".
Attributes:
Name | Type | Description |
---|---|---|
num_instructions |
int
|
The number of instructions to be generated. Defaults to 5. |
criteria_for_query_generation |
str
|
The criteria for the query generation. Defaults to the criteria defined within the paper. |
application_description |
str
|
The description of the AI application that one want
to build with these instructions. Defaults to |
Input columns
- input (
str
): The input to generate the instructions. It's also called seed in the paper.
Output columns
- instructions (
List[str]
): The generated instructions.
Source code in src/distilabel/steps/tasks/self_instruct.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
inputs: List[str]
property
¶
The input for the task is the input
i.e. seed text.
outputs
property
¶
The output for the task is a list of instructions
containing the generated instructions.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation.
Source code in src/distilabel/steps/tasks/self_instruct.py
format_output(output, input=None)
¶
The output is formatted as a list with the generated instructions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output |
Union[str, None]
|
the raw output of the LLM. |
required |
input |
Optional[Dict[str, Any]]
|
the input to the task. Used for obtaining the number of responses. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
A dict with containing the generated instructions. |
Source code in src/distilabel/steps/tasks/self_instruct.py
load()
¶
Loads the Jinja2 template for SelfInstruct.
Source code in src/distilabel/steps/tasks/self_instruct.py
Task
¶
Bases: _Task
, Step
Task is a class that implements the _Task
abstract class and adds the Step
interface to be used as a step in the pipeline.
Attributes:
Name | Type | Description |
---|---|---|
llm |
the |
|
group_generations |
whether to group the |
|
num_generations |
The number of generations to be produced per input. |
Source code in src/distilabel/steps/tasks/base.py
format_input(input)
abstractmethod
¶
Abstract method to format the inputs of the task. It needs to receive an input as a Python dictionary, and generates an OpenAI chat-like list of dicts.
Source code in src/distilabel/steps/tasks/base.py
process(inputs)
¶
Processes the inputs of the task and generates the outputs using the LLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Yields:
Type | Description |
---|---|
StepOutput
|
A list of Python dictionaries with the outputs of the task. |
Source code in src/distilabel/steps/tasks/base.py
TextGeneration
¶
Bases: Task
TextGeneration is a pre-defined task that defines the instruction
as the input
and generation
as the output. This task is used to generate text based on the input
instruction. The model_name is also returned as part of the output in order to enhance it.
Input columns
- instruction (
str
): The instruction to generate text from.
Output columns
- generation (
str
): The generated text. - model_name (
str
): The model name used to generate the text.
Source code in src/distilabel/steps/tasks/text_generation.py
inputs: List[str]
property
¶
The input for the task is the instruction
.
outputs: List[str]
property
¶
The output for the task is the generation
and the model_name
.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation.
Source code in src/distilabel/steps/tasks/text_generation.py
format_output(output, input)
¶
The output is formatted as a dictionary with the generation
. The model_name
will be automatically included within the process
method of Task
.
Source code in src/distilabel/steps/tasks/text_generation.py
UltraFeedback
¶
Bases: Task
UltraFeedback: Boosting Language Models with High-quality Feedback.
Attributes:
Name | Type | Description |
---|---|---|
aspect |
Literal['helpfulness', 'honesty', 'instruction-following', 'truthfulness', 'overall-rating']
|
The aspect to perform with the |
Input columns
- instruction (
str
): The reference instruction to evaluate the text outputs. - generations (
List[str]
): The text outputs to evaluate for the given instruction.
Output columns
- ratings (
List[float]
): The ratings for each of the provided text outputs. - rationales (
List[str]
): The rationales for each of the provided text outputs. - model_name (
str
): The name of the model used to generate the ratings and rationales.
References
Source code in src/distilabel/steps/tasks/ultrafeedback.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
inputs: List[str]
property
¶
The input for the task is the instruction
, and the generations
for it.
outputs: List[str]
property
¶
The output for the task is the generation
and the model_name
.
format_input(input)
¶
The input is formatted as a ChatType
assuming that the instruction
is the first interaction from the user within a conversation.
Source code in src/distilabel/steps/tasks/ultrafeedback.py
format_output(output, input)
¶
The output is formatted as a dictionary with the ratings
and rationales
for
each of the provided generations
for the given instruction
. The model_name
will be automatically included within the process
method of Task
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output |
Union[str, None]
|
a string representing the output of the LLM via the |
required |
input |
Dict[str, Any]
|
the input to the task, as required by some tasks to format the output. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
A dictionary containing either the |
Dict[str, Any]
|
|
Dict[str, Any]
|
|
Dict[str, Any]
|
|
Dict[str, Any]
|
given |
Source code in src/distilabel/steps/tasks/ultrafeedback.py
load()
¶
Loads the Jinja2 template for the given aspect
.