Skip to content

Using the Distiset dataset object

A Pipeline in distilabel returns a special type of Hugging Face datasets.DatasetDict which is called Distiset.

The Distiset is a dictionary-like object that contains the different configurations generated by the Pipeline, where each configuration corresponds to each leaf step in the DAG built by the Pipeline. Each configuration corresponds to a different subset of the dataset. This is a concept taken from 🤗 datasets that lets you upload different configurations of the same dataset within the same repository and can contain different columns i.e. different configurations, which can be seamlessly pushed to the Hugging Face Hub.

Below you can find an example of how to create a Distiset object that resembles a datasets.DatasetDict:

from datasets import Dataset
from distilabel.distiset import Distiset

distiset = Distiset(
    {
        "leaf_step_1": Dataset.from_dict({"instruction": [1, 2, 3]}),
        "leaf_step_2": Dataset.from_dict(
            {"instruction": [1, 2, 3, 4], "generation": [5, 6, 7, 8]}
        ),
    }
)

Note

If there's only one leaf node, i.e., only one step at the end of the Pipeline, then the configuration name won't be the name of the last step, but it will be set to "default" instead, as that's more aligned with standard datasets within the Hugging Face Hub.

Distiset methods

We can interact with the different pieces generated by the Pipeline and treat them as different configurations. The Distiset contains just two methods:

Train/Test split

Create a train/test split partition of the dataset for the different configurations or subsets.

>>> distiset.train_test_split(train_size=0.9)
Distiset({
    leaf_step_1: DatasetDict({
        train: Dataset({
            features: ['instruction'],
            num_rows: 2
        })
        test: Dataset({
            features: ['instruction'],
            num_rows: 1
        })
    })
    leaf_step_2: DatasetDict({
        train: Dataset({
            features: ['instruction', 'generation'],
            num_rows: 3
        })
        test: Dataset({
            features: ['instruction', 'generation'],
            num_rows: 1
        })
    })
})

Push to Hugging Face Hub

Push the Distiset to a Hugging Face repository, where each one of the subsets will correspond to a different configuration:

distiset.push_to_hub(
    "my-org/my-dataset",
    commit_message="Initial commit",
    private=False,
    token=os.getenv("HF_TOKEN"),
)

Save and load from disk

Take into account that these methods work as datasets.load_from_disk and datasets.Dataset.save_to_disk so the arguments are directly passed to those methods. This means you can also make use of storage_options argument to save your Distiset in your cloud provider, including the distilabel artifacts (pipeline.yaml, pipeline.log and the README.md with the dataset card). You can read more in datasets documentation here.

Save the Distiset to disk, and optionally (will be done by default) saves the dataset card, the pipeline config file and logs:

distiset.save_to_disk(
    "my-dataset",
    save_card=True,
    save_pipeline_config=True,
    save_pipeline_log=True
)

Load a Distiset that was saved using Distiset.save_to_disk just the same way:

distiset = Distiset.load_from_disk("my-dataset")

Load a Distiset from a remote location, like S3, GCS. You can pass the storage_options argument to authenticate with the cloud provider:

distiset = Distiset.load_from_disk(
    "s3://path/to/my_dataset",  # gcs:// or any filesystem tolerated by fsspec
    storage_options={
        "key": os.environ["S3_ACCESS_KEY"],
        "secret": os.environ["S3_SECRET_KEY"],
        ...
    }
)

Take a look at the remaining arguments at Distiset.save_to_disk and Distiset.load_from_disk.

Dataset card

Having this special type of dataset comes with an added advantage when calling Distiset.push_to_hub, which is the automatically generated dataset card in the Hugging Face Hub. Note that it is enabled by default, but can be disabled by setting generate_card=False:

distiset.push_to_hub("my-org/my-dataset", generate_card=True)

We will have an automatic dataset card (an example can be seen here) with some handy information like reproducing the Pipeline with the CLI, or examples of the records from the different subsets.

create_distiset helper

Lastly, we presented in the caching section the create_distiset function, you can take a look at the section to see how to create a Distiset from the cache folder, using the helper function to automatically include all the relevant data.