Skip to content

AzureOpenAILLM

AzureOpenAILLM

Bases: OpenAILLM

Azure OpenAI LLM implementation running the async API client.

Attributes:

Name Type Description
model

the model name to use for the LLM i.e. the name of the Azure deployment.

base_url Optional[RuntimeParameter[str]]

the base URL to use for the Azure OpenAI API can be set with AZURE_OPENAI_ENDPOINT. Defaults to None which means that the value set for the environment variable AZURE_OPENAI_ENDPOINT will be used, or None if not set.

api_key Optional[RuntimeParameter[SecretStr]]

the API key to authenticate the requests to the Azure OpenAI API. Defaults to None which means that the value set for the environment variable AZURE_OPENAI_API_KEY will be used, or None if not set.

api_version Optional[RuntimeParameter[str]]

the API version to use for the Azure OpenAI API. Defaults to None which means that the value set for the environment variable OPENAI_API_VERSION will be used, or None if not set.

Icon

:material-microsoft-azure:

Examples:

Generate text:

```python
from distilabel.llms import AzureOpenAILLM

llm = AzureOpenAILLM(model="gpt-4-turbo", api_key="api.key")

llm.load()

# Synchrounous request
output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])

# Asynchronous request
output = await llm.agenerate(input=[{"role": "user", "content": "Hello world!"}])
```

Generate text from a custom endpoint following the OpenAI API:

```python
from distilabel.llms import AzureOpenAILLM

llm = AzureOpenAILLM(
    model="prometheus-eval/prometheus-7b-v2.0",
    base_url=r"http://localhost:8080/v1"
)

llm.load()

# Synchronous request
output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])

# Asynchronous request
output = await llm.agenerate(input=[{"role": "user", "content": "Hello world!"}])
```

Generate structured data:

```python
from pydantic import BaseModel
from distilabel.llms import AzureOpenAILLM

class User(BaseModel):
    name: str
    last_name: str
    id: int

llm = AzureOpenAILLM(
    model="gpt-4-turbo",
    api_key="api.key",
    structured_output={"schema": User}
)

llm.load()

output = llm.generate(inputs=[[{"role": "user", "content": "Create a user profile for the following marathon"}]])
```
Source code in src/distilabel/llms/azure.py
class AzureOpenAILLM(OpenAILLM):
    """Azure OpenAI LLM implementation running the async API client.

    Attributes:
        model: the model name to use for the LLM i.e. the name of the Azure deployment.
        base_url: the base URL to use for the Azure OpenAI API can be set with `AZURE_OPENAI_ENDPOINT`.
            Defaults to `None` which means that the value set for the environment variable
            `AZURE_OPENAI_ENDPOINT` will be used, or `None` if not set.
        api_key: the API key to authenticate the requests to the Azure OpenAI API. Defaults to `None`
            which means that the value set for the environment variable `AZURE_OPENAI_API_KEY` will be
            used, or `None` if not set.
        api_version: the API version to use for the Azure OpenAI API. Defaults to `None` which means
            that the value set for the environment variable `OPENAI_API_VERSION` will be used, or
            `None` if not set.

    Icon:
        `:material-microsoft-azure:`

    Examples:

        Generate text:

        ```python
        from distilabel.llms import AzureOpenAILLM

        llm = AzureOpenAILLM(model="gpt-4-turbo", api_key="api.key")

        llm.load()

        # Synchrounous request
        output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])

        # Asynchronous request
        output = await llm.agenerate(input=[{"role": "user", "content": "Hello world!"}])
        ```

        Generate text from a custom endpoint following the OpenAI API:

        ```python
        from distilabel.llms import AzureOpenAILLM

        llm = AzureOpenAILLM(
            model="prometheus-eval/prometheus-7b-v2.0",
            base_url=r"http://localhost:8080/v1"
        )

        llm.load()

        # Synchronous request
        output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])

        # Asynchronous request
        output = await llm.agenerate(input=[{"role": "user", "content": "Hello world!"}])
        ```

        Generate structured data:

        ```python
        from pydantic import BaseModel
        from distilabel.llms import AzureOpenAILLM

        class User(BaseModel):
            name: str
            last_name: str
            id: int

        llm = AzureOpenAILLM(
            model="gpt-4-turbo",
            api_key="api.key",
            structured_output={"schema": User}
        )

        llm.load()

        output = llm.generate(inputs=[[{"role": "user", "content": "Create a user profile for the following marathon"}]])
        ```
    """

    base_url: Optional[RuntimeParameter[str]] = Field(
        default_factory=lambda: os.getenv(_AZURE_OPENAI_ENDPOINT_ENV_VAR_NAME),
        description="The base URL to use for the Azure OpenAI API requests i.e. the Azure OpenAI endpoint.",
    )
    api_key: Optional[RuntimeParameter[SecretStr]] = Field(
        default_factory=lambda: os.getenv(_AZURE_OPENAI_API_KEY_ENV_VAR_NAME),
        description="The API key to authenticate the requests to the Azure OpenAI API.",
    )

    api_version: Optional[RuntimeParameter[str]] = Field(
        default_factory=lambda: os.getenv("OPENAI_API_VERSION"),
        description="The API version to use for the Azure OpenAI API.",
    )

    _base_url_env_var: str = PrivateAttr(_AZURE_OPENAI_ENDPOINT_ENV_VAR_NAME)
    _api_key_env_var: str = PrivateAttr(_AZURE_OPENAI_API_KEY_ENV_VAR_NAME)
    _aclient: Optional["AsyncAzureOpenAI"] = PrivateAttr(...)  # type: ignore

    @override
    def load(self) -> None:
        """Loads the `AsyncAzureOpenAI` client to benefit from async requests."""
        # This is a workaround to avoid the `OpenAILLM` calling the _prepare_structured_output
        # in the load method before we have the proper client.
        with patch(
            "distilabel.llms.openai.OpenAILLM._prepare_structured_output", lambda x: x
        ):
            super().load()

        try:
            from openai import AsyncAzureOpenAI
        except ImportError as ie:
            raise ImportError(
                "OpenAI Python client is not installed. Please install it using"
                " `pip install openai`."
            ) from ie

        if self.api_key is None:
            raise ValueError(
                f"To use `{self.__class__.__name__}` an API key must be provided via `api_key`"
                f" attribute or runtime parameter, or set the environment variable `{self._api_key_env_var}`."
            )

        # TODO: May be worth adding the AD auth too? Also the `organization`?
        self._aclient = AsyncAzureOpenAI(  # type: ignore
            azure_endpoint=self.base_url,  # type: ignore
            azure_deployment=self.model,
            api_version=self.api_version,
            api_key=self.api_key.get_secret_value(),
            max_retries=self.max_retries,  # type: ignore
            timeout=self.timeout,
        )

        if self.structured_output:
            self._prepare_structured_output(self.structured_output)

load()

Loads the AsyncAzureOpenAI client to benefit from async requests.

Source code in src/distilabel/llms/azure.py
@override
def load(self) -> None:
    """Loads the `AsyncAzureOpenAI` client to benefit from async requests."""
    # This is a workaround to avoid the `OpenAILLM` calling the _prepare_structured_output
    # in the load method before we have the proper client.
    with patch(
        "distilabel.llms.openai.OpenAILLM._prepare_structured_output", lambda x: x
    ):
        super().load()

    try:
        from openai import AsyncAzureOpenAI
    except ImportError as ie:
        raise ImportError(
            "OpenAI Python client is not installed. Please install it using"
            " `pip install openai`."
        ) from ie

    if self.api_key is None:
        raise ValueError(
            f"To use `{self.__class__.__name__}` an API key must be provided via `api_key`"
            f" attribute or runtime parameter, or set the environment variable `{self._api_key_env_var}`."
        )

    # TODO: May be worth adding the AD auth too? Also the `organization`?
    self._aclient = AsyncAzureOpenAI(  # type: ignore
        azure_endpoint=self.base_url,  # type: ignore
        azure_deployment=self.model,
        api_version=self.api_version,
        api_key=self.api_key.get_secret_value(),
        max_retries=self.max_retries,  # type: ignore
        timeout=self.timeout,
    )

    if self.structured_output:
        self._prepare_structured_output(self.structured_output)