Skip to content

OpenAILLM

OpenAILLM

Bases: AsyncLLM

OpenAI LLM implementation running the async API client.

Attributes:

Name Type Description
model str

the model name to use for the LLM e.g. "gpt-3.5-turbo", "gpt-4", etc. Supported models can be found here.

base_url Optional[RuntimeParameter[str]]

the base URL to use for the OpenAI API requests. Defaults to None, which means that the value set for the environment variable OPENAI_BASE_URL will be used, or "https://api.openai.com/v1" if not set.

api_key Optional[RuntimeParameter[SecretStr]]

the API key to authenticate the requests to the OpenAI API. Defaults to None which means that the value set for the environment variable OPENAI_API_KEY will be used, or None if not set.

max_retries RuntimeParameter[int]

the maximum number of times to retry the request to the API before failing. Defaults to 6.

timeout RuntimeParameter[int]

the maximum time in seconds to wait for a response from the API. Defaults to 120.

structured_output Optional[RuntimeParameter[InstructorStructuredOutputType]]

a dictionary containing the structured output configuration configuration using instructor. You can take a look at the dictionary structure in InstructorStructuredOutputType from distilabel.steps.tasks.structured_outputs.instructor.

Runtime parameters
  • base_url: the base URL to use for the OpenAI API requests. Defaults to None.
  • api_key: the API key to authenticate the requests to the OpenAI API. Defaults to None.
  • max_retries: the maximum number of times to retry the request to the API before failing. Defaults to 6.
  • timeout: the maximum time in seconds to wait for a response from the API. Defaults to 120.
Icon

:simple-openai:

Examples:

Generate text:

```python
from distilabel.llms import OpenAILLM

llm = OpenAILLM(model="gpt-4-turbo", api_key="api.key")

llm.load()

output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])
```

Generate text from a custom endpoint following the OpenAI API:

```python
from distilabel.llms import OpenAILLM

llm = OpenAILLM(
    model="prometheus-eval/prometheus-7b-v2.0",
    base_url=r"http://localhost:8080/v1"
)

llm.load()

output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])
```

Generate structured data:

```python
from pydantic import BaseModel
from distilabel.llms import OpenAILLM

class User(BaseModel):
    name: str
    last_name: str
    id: int

llm = OpenAILLM(
    model="gpt-4-turbo",
    api_key="api.key",
    structured_output={"schema": User}
)

llm.load()

output = llm.generate(inputs=[[{"role": "user", "content": "Create a user profile for the following marathon"}]])
```
Source code in src/distilabel/llms/openai.py
class OpenAILLM(AsyncLLM):
    """OpenAI LLM implementation running the async API client.

    Attributes:
        model: the model name to use for the LLM e.g. "gpt-3.5-turbo", "gpt-4", etc.
            Supported models can be found [here](https://platform.openai.com/docs/guides/text-generation).
        base_url: the base URL to use for the OpenAI API requests. Defaults to `None`, which
            means that the value set for the environment variable `OPENAI_BASE_URL` will
            be used, or "https://api.openai.com/v1" if not set.
        api_key: the API key to authenticate the requests to the OpenAI API. Defaults to
            `None` which means that the value set for the environment variable `OPENAI_API_KEY`
            will be used, or `None` if not set.
        max_retries: the maximum number of times to retry the request to the API before
            failing. Defaults to `6`.
        timeout: the maximum time in seconds to wait for a response from the API. Defaults
            to `120`.
        structured_output: a dictionary containing the structured output configuration configuration
            using `instructor`. You can take a look at the dictionary structure in
            `InstructorStructuredOutputType` from `distilabel.steps.tasks.structured_outputs.instructor`.

    Runtime parameters:
        - `base_url`: the base URL to use for the OpenAI API requests. Defaults to `None`.
        - `api_key`: the API key to authenticate the requests to the OpenAI API. Defaults
            to `None`.
        - `max_retries`: the maximum number of times to retry the request to the API before
            failing. Defaults to `6`.
        - `timeout`: the maximum time in seconds to wait for a response from the API. Defaults
            to `120`.

    Icon:
        `:simple-openai:`

    Examples:

        Generate text:

        ```python
        from distilabel.llms import OpenAILLM

        llm = OpenAILLM(model="gpt-4-turbo", api_key="api.key")

        llm.load()

        output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])
        ```

        Generate text from a custom endpoint following the OpenAI API:

        ```python
        from distilabel.llms import OpenAILLM

        llm = OpenAILLM(
            model="prometheus-eval/prometheus-7b-v2.0",
            base_url=r"http://localhost:8080/v1"
        )

        llm.load()

        output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])
        ```

        Generate structured data:

        ```python
        from pydantic import BaseModel
        from distilabel.llms import OpenAILLM

        class User(BaseModel):
            name: str
            last_name: str
            id: int

        llm = OpenAILLM(
            model="gpt-4-turbo",
            api_key="api.key",
            structured_output={"schema": User}
        )

        llm.load()

        output = llm.generate(inputs=[[{"role": "user", "content": "Create a user profile for the following marathon"}]])
        ```
    """

    model: str
    base_url: Optional[RuntimeParameter[str]] = Field(
        default_factory=lambda: os.getenv(
            "OPENAI_BASE_URL", "https://api.openai.com/v1"
        ),
        description="The base URL to use for the OpenAI API requests.",
    )
    api_key: Optional[RuntimeParameter[SecretStr]] = Field(
        default_factory=lambda: os.getenv(_OPENAI_API_KEY_ENV_VAR_NAME),
        description="The API key to authenticate the requests to the OpenAI API.",
    )
    max_retries: RuntimeParameter[int] = Field(
        default=6,
        description="The maximum number of times to retry the request to the API before"
        " failing.",
    )
    timeout: RuntimeParameter[int] = Field(
        default=120,
        description="The maximum time in seconds to wait for a response from the API.",
    )
    structured_output: Optional[RuntimeParameter[InstructorStructuredOutputType]] = (
        Field(
            default=None,
            description="The structured output format to use across all the generations.",
        )
    )

    _api_key_env_var: str = PrivateAttr(_OPENAI_API_KEY_ENV_VAR_NAME)
    _aclient: "AsyncOpenAI" = PrivateAttr(None)

    def load(self) -> None:
        """Loads the `AsyncOpenAI` client to benefit from async requests."""
        super().load()

        try:
            from openai import AsyncOpenAI
        except ImportError as ie:
            raise ImportError(
                "OpenAI Python client is not installed. Please install it using"
                " `pip install openai`."
            ) from ie

        if self.api_key is None:
            raise ValueError(
                f"To use `{self.__class__.__name__}` an API key must be provided via `api_key`"
                f" attribute or runtime parameter, or set the environment variable `{self._api_key_env_var}`."
            )

        self._aclient = AsyncOpenAI(
            base_url=self.base_url,
            api_key=self.api_key.get_secret_value(),
            max_retries=self.max_retries,  # type: ignore
            timeout=self.timeout,
        )

        if self.structured_output:
            result = self._prepare_structured_output(
                structured_output=self.structured_output,
                client=self._aclient,
                framework="openai",
            )
            self._aclient = result.get("client")  # type: ignore
            if structured_output := result.get("structured_output"):
                self.structured_output = structured_output

    @property
    def model_name(self) -> str:
        """Returns the model name used for the LLM."""
        return self.model

    @validate_call
    async def agenerate(  # type: ignore
        self,
        input: FormattedInput,
        num_generations: int = 1,
        max_new_tokens: int = 128,
        frequency_penalty: float = 0.0,
        presence_penalty: float = 0.0,
        temperature: float = 1.0,
        top_p: float = 1.0,
        stop: Optional[Union[str, List[str]]] = None,
        response_format: Optional[str] = None,
    ) -> GenerateOutput:
        """Generates `num_generations` responses for the given input using the OpenAI async
        client.

        Args:
            input: a single input in chat format to generate responses for.
            num_generations: the number of generations to create per input. Defaults to
                `1`.
            max_new_tokens: the maximum number of new tokens that the model will generate.
                Defaults to `128`.
            frequency_penalty: the repetition penalty to use for the generation. Defaults
                to `0.0`.
            presence_penalty: the presence penalty to use for the generation. Defaults to
                `0.0`.
            temperature: the temperature to use for the generation. Defaults to `0.1`.
            top_p: the top-p value to use for the generation. Defaults to `1.0`.
            stop: a string or a list of strings to use as a stop sequence for the generation.
                Defaults to `None`.
            response_format: the format of the response to return. Must be one of
                "text" or "json". Read the documentation [here](https://platform.openai.com/docs/guides/text-generation/json-mode)
                for more information on how to use the JSON model from OpenAI. Defaults to `text`.

        Note:
            If response_format

        Returns:
            A list of lists of strings containing the generated responses for each input.
        """

        structured_output = None
        if isinstance(input, tuple):
            input, structured_output = input
            result = self._prepare_structured_output(
                structured_output=structured_output,
                client=self._aclient,
                framework="openai",
            )
            self._aclient = result.get("client")

        if structured_output is None and self.structured_output is not None:
            structured_output = self.structured_output

        kwargs = {
            "messages": input,  # type: ignore
            "model": self.model,
            "max_tokens": max_new_tokens,
            "n": num_generations,
            "frequency_penalty": frequency_penalty,
            "presence_penalty": presence_penalty,
            "temperature": temperature,
            "top_p": top_p,
            "stop": stop,
        }

        if response_format is not None:
            if response_format not in ["text", "json", "json_object"]:
                raise ValueError(
                    f"Invalid response format '{response_format}'. Must be either 'text'"
                    " or 'json'."
                )

            if response_format == "json":
                response_format = "json_object"

            kwargs["response_format"] = response_format

        if structured_output:
            kwargs = self._prepare_kwargs(kwargs, structured_output)

        generations = []
        completion = await self._aclient.chat.completions.create(**kwargs)  # type: ignore

        if structured_output:
            generations.append(completion.model_dump_json())
            return generations

        for choice in completion.choices:
            if (content := choice.message.content) is None:
                self._logger.warning(  # type: ignore
                    f"Received no response using OpenAI client (model: '{self.model}')."
                    f" Finish reason was: {choice.finish_reason}"
                )
            generations.append(content)
        return generations

model_name: str property

Returns the model name used for the LLM.

agenerate(input, num_generations=1, max_new_tokens=128, frequency_penalty=0.0, presence_penalty=0.0, temperature=1.0, top_p=1.0, stop=None, response_format=None) async

Generates num_generations responses for the given input using the OpenAI async client.

Parameters:

Name Type Description Default
input FormattedInput

a single input in chat format to generate responses for.

required
num_generations int

the number of generations to create per input. Defaults to 1.

1
max_new_tokens int

the maximum number of new tokens that the model will generate. Defaults to 128.

128
frequency_penalty float

the repetition penalty to use for the generation. Defaults to 0.0.

0.0
presence_penalty float

the presence penalty to use for the generation. Defaults to 0.0.

0.0
temperature float

the temperature to use for the generation. Defaults to 0.1.

1.0
top_p float

the top-p value to use for the generation. Defaults to 1.0.

1.0
stop Optional[Union[str, List[str]]]

a string or a list of strings to use as a stop sequence for the generation. Defaults to None.

None
response_format Optional[str]

the format of the response to return. Must be one of "text" or "json". Read the documentation here for more information on how to use the JSON model from OpenAI. Defaults to text.

None
Note

If response_format

Returns:

Type Description
GenerateOutput

A list of lists of strings containing the generated responses for each input.

Source code in src/distilabel/llms/openai.py
@validate_call
async def agenerate(  # type: ignore
    self,
    input: FormattedInput,
    num_generations: int = 1,
    max_new_tokens: int = 128,
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
    temperature: float = 1.0,
    top_p: float = 1.0,
    stop: Optional[Union[str, List[str]]] = None,
    response_format: Optional[str] = None,
) -> GenerateOutput:
    """Generates `num_generations` responses for the given input using the OpenAI async
    client.

    Args:
        input: a single input in chat format to generate responses for.
        num_generations: the number of generations to create per input. Defaults to
            `1`.
        max_new_tokens: the maximum number of new tokens that the model will generate.
            Defaults to `128`.
        frequency_penalty: the repetition penalty to use for the generation. Defaults
            to `0.0`.
        presence_penalty: the presence penalty to use for the generation. Defaults to
            `0.0`.
        temperature: the temperature to use for the generation. Defaults to `0.1`.
        top_p: the top-p value to use for the generation. Defaults to `1.0`.
        stop: a string or a list of strings to use as a stop sequence for the generation.
            Defaults to `None`.
        response_format: the format of the response to return. Must be one of
            "text" or "json". Read the documentation [here](https://platform.openai.com/docs/guides/text-generation/json-mode)
            for more information on how to use the JSON model from OpenAI. Defaults to `text`.

    Note:
        If response_format

    Returns:
        A list of lists of strings containing the generated responses for each input.
    """

    structured_output = None
    if isinstance(input, tuple):
        input, structured_output = input
        result = self._prepare_structured_output(
            structured_output=structured_output,
            client=self._aclient,
            framework="openai",
        )
        self._aclient = result.get("client")

    if structured_output is None and self.structured_output is not None:
        structured_output = self.structured_output

    kwargs = {
        "messages": input,  # type: ignore
        "model": self.model,
        "max_tokens": max_new_tokens,
        "n": num_generations,
        "frequency_penalty": frequency_penalty,
        "presence_penalty": presence_penalty,
        "temperature": temperature,
        "top_p": top_p,
        "stop": stop,
    }

    if response_format is not None:
        if response_format not in ["text", "json", "json_object"]:
            raise ValueError(
                f"Invalid response format '{response_format}'. Must be either 'text'"
                " or 'json'."
            )

        if response_format == "json":
            response_format = "json_object"

        kwargs["response_format"] = response_format

    if structured_output:
        kwargs = self._prepare_kwargs(kwargs, structured_output)

    generations = []
    completion = await self._aclient.chat.completions.create(**kwargs)  # type: ignore

    if structured_output:
        generations.append(completion.model_dump_json())
        return generations

    for choice in completion.choices:
        if (content := choice.message.content) is None:
            self._logger.warning(  # type: ignore
                f"Received no response using OpenAI client (model: '{self.model}')."
                f" Finish reason was: {choice.finish_reason}"
            )
        generations.append(content)
    return generations

load()

Loads the AsyncOpenAI client to benefit from async requests.

Source code in src/distilabel/llms/openai.py
def load(self) -> None:
    """Loads the `AsyncOpenAI` client to benefit from async requests."""
    super().load()

    try:
        from openai import AsyncOpenAI
    except ImportError as ie:
        raise ImportError(
            "OpenAI Python client is not installed. Please install it using"
            " `pip install openai`."
        ) from ie

    if self.api_key is None:
        raise ValueError(
            f"To use `{self.__class__.__name__}` an API key must be provided via `api_key`"
            f" attribute or runtime parameter, or set the environment variable `{self._api_key_env_var}`."
        )

    self._aclient = AsyncOpenAI(
        base_url=self.base_url,
        api_key=self.api_key.get_secret_value(),
        max_retries=self.max_retries,  # type: ignore
        timeout=self.timeout,
    )

    if self.structured_output:
        result = self._prepare_structured_output(
            structured_output=self.structured_output,
            client=self._aclient,
            framework="openai",
        )
        self._aclient = result.get("client")  # type: ignore
        if structured_output := result.get("structured_output"):
            self.structured_output = structured_output