Embedding Gallery¶
This section contains the existing Embeddings
subclasses implemented in distilabel
.
embeddings
¶
SentenceTransformerEmbeddings
¶
Bases: Embeddings
, CudaDevicePlacementMixin
sentence-transformers
library implementation for embedding generation.
Attributes:
Name | Type | Description |
---|---|---|
model |
str
|
the model Hugging Face Hub repo id or a path to a directory containing the model weights and configuration files. |
device |
Optional[RuntimeParameter[str]]
|
the name of the device used to load the model e.g. "cuda", "mps", etc.
Defaults to |
prompts |
Optional[Dict[str, str]]
|
a dictionary containing prompts to be used with the model. Defaults to
|
default_prompt_name |
Optional[str]
|
the default prompt (in |
trust_remote_code |
bool
|
whether to allow fetching and executing remote code fetched
from the repository in the Hub. Defaults to |
revision |
Optional[str]
|
if |
token |
Optional[str]
|
the Hugging Face Hub token that will be used to authenticate to the Hugging
Face Hub. If not provided, the |
truncate_dim |
Optional[int]
|
the dimension to truncate the sentence embeddings. Defaults to |
model_kwargs |
Optional[Dict[str, Any]]
|
extra kwargs that will be passed to the Hugging Face |
tokenizer_kwargs |
Optional[Dict[str, Any]]
|
extra kwargs that will be passed to the Hugging Face |
config_kwargs |
Optional[Dict[str, Any]]
|
extra kwargs that will be passed to the Hugging Face |
precision |
Optional[Literal['float32', 'int8', 'uint8', 'binary', 'ubinary']]
|
the dtype that will have the resulting embeddings. Defaults to |
normalize_embeddings |
RuntimeParameter[bool]
|
whether to normalize the embeddings so they have a length
of 1. Defaults to |
Examples:
Generating sentence embeddings:
from distilabel.embeddings import SentenceTransformerEmbeddings
embeddings = SentenceTransformerEmbeddings(model="mixedbread-ai/mxbai-embed-large-v1")
embeddings.load()
results = embeddings.encode(inputs=["distilabel is awesome!", "and Argilla!"])
# [
# [-0.05447685346007347, -0.01623094454407692, ...],
# [4.4889533455716446e-05, 0.044016145169734955, ...],
# ]
Source code in src/distilabel/embeddings/sentence_transformers.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
model_name: str
property
¶
Returns the name of the model.
load()
¶
Loads the Sentence Transformer model
Source code in src/distilabel/embeddings/sentence_transformers.py
encode(inputs)
¶
Generates embeddings for the provided inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
List[str]
|
a list of texts for which an embedding has to be generated. |
required |
Returns:
Type | Description |
---|---|
List[List[Union[int, float]]]
|
The generated embeddings. |
Source code in src/distilabel/embeddings/sentence_transformers.py
vLLMEmbeddings
¶
Bases: Embeddings
, CudaDevicePlacementMixin
vllm
library implementation for embedding generation.
Attributes:
Name | Type | Description |
---|---|---|
model |
str
|
the model Hugging Face Hub repo id or a path to a directory containing the model weights and configuration files. |
dtype |
str
|
the data type to use for the model. Defaults to |
trust_remote_code |
bool
|
whether to trust the remote code when loading the model. Defaults
to |
quantization |
Optional[str]
|
the quantization mode to use for the model. Defaults to |
revision |
Optional[str]
|
the revision of the model to load. Defaults to |
enforce_eager |
bool
|
whether to enforce eager execution. Defaults to |
seed |
int
|
the seed to use for the random number generator. Defaults to |
extra_kwargs |
Optional[RuntimeParameter[Dict[str, Any]]]
|
additional dictionary of keyword arguments that will be passed to the
|
_model |
LLM
|
the |
References
Examples:
Generating sentence embeddings:
from distilabel.embeddings import vLLMEmbeddings
embeddings = vLLMEmbeddings(model="intfloat/e5-mistral-7b-instruct")
embeddings.load()
results = embeddings.encode(inputs=["distilabel is awesome!", "and Argilla!"])
# [
# [-0.05447685346007347, -0.01623094454407692, ...],
# [4.4889533455716446e-05, 0.044016145169734955, ...],
# ]
Source code in src/distilabel/embeddings/vllm.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
model_name: str
property
¶
Returns the name of the model.
load()
¶
Loads the vLLM
model using either the path or the Hugging Face Hub repository id.
Source code in src/distilabel/embeddings/vllm.py
unload()
¶
encode(inputs)
¶
Generates embeddings for the provided inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
List[str]
|
a list of texts for which an embedding has to be generated. |
required |
Returns:
Type | Description |
---|---|
List[List[Union[int, float]]]
|
The generated embeddings. |