ChatGeneration¶
Generates text based on a conversation.
ChatGeneration is a pre-defined task that defines the messages as the input
    and generation as the output. This task is used to generate text based on a conversation.
    The model_name is also returned as part of the output in order to enhance it.
Input & Output Columns¶
graph TD
    subgraph Dataset
        subgraph Columns
            ICOL0[messages]
        end
        subgraph New columns
            OCOL0[generation]
            OCOL1[model_name]
        end
    end
    subgraph ChatGeneration
        StepInput[Input Columns: messages]
        StepOutput[Output Columns: generation, model_name]
    end
    ICOL0 --> StepInput
    StepOutput --> OCOL0
    StepOutput --> OCOL1
    StepInput --> StepOutput
Inputs¶
- messages (List[Dict[Literal["role", "content"], str]]): The messages to generate the follow up completion from.
Outputs¶
- 
generation ( str): The generated text from the assistant.
- 
model_name ( str): The model name used to generate the text.
Examples¶
Generate text from a conversation in OpenAI chat format¶
from distilabel.steps.tasks import ChatGeneration
from distilabel.models import InferenceEndpointsLLM
# Consider this as a placeholder for your actual LLM.
chat = ChatGeneration(
    llm=InferenceEndpointsLLM(
        model_id="mistralai/Mistral-7B-Instruct-v0.2",
    )
)
chat.load()
result = next(
    chat.process(
        [
            {
                "messages": [
                    {"role": "user", "content": "How much is 2+2?"},
                ]
            }
        ]
    )
)
# result
# [
#     {
#         'messages': [{'role': 'user', 'content': 'How much is 2+2?'}],
#         'model_name': 'mistralai/Mistral-7B-Instruct-v0.2',
#         'generation': '4',
#     }
# ]