InstructionBacktranslation¶
Self-Alignment with Instruction Backtranslation.
Attributes¶
- _template: the Jinja2 template to use for the Instruction Backtranslation task.
Input & Output Columns¶
graph TD
    subgraph Dataset
        subgraph Columns
            ICOL0[instruction]
            ICOL1[generation]
        end
        subgraph New columns
            OCOL0[score]
            OCOL1[reason]
            OCOL2[model_name]
        end
    end
    subgraph InstructionBacktranslation
        StepInput[Input Columns: instruction, generation]
        StepOutput[Output Columns: score, reason, model_name]
    end
    ICOL0 --> StepInput
    ICOL1 --> StepInput
    StepOutput --> OCOL0
    StepOutput --> OCOL1
    StepOutput --> OCOL2
    StepInput --> StepOutput
Inputs¶
- 
instruction ( str): The reference instruction to evaluate the text output.
- 
generation ( str): The text output to evaluate for the given instruction.
Outputs¶
- 
score ( str): The score for the generation based on the given instruction.
- 
reason ( str): The reason for the provided score.
- 
model_name ( str): The model name used to score the generation.
Examples¶
Generate a score and reason for a given instruction and generation¶
from distilabel.steps.tasks import InstructionBacktranslation
instruction_backtranslation = InstructionBacktranslation(
        name="instruction_backtranslation",
        llm=llm,
        input_batch_size=10,
        output_mappings={"model_name": "scoring_model"},
    )
instruction_backtranslation.load()
result = next(
    instruction_backtranslation.process(
        [
            {
                "instruction": "How much is 2+2?",
                "generation": "4",
            }
        ]
    )
)
# result
# [
#     {
#         "instruction": "How much is 2+2?",
#         "generation": "4",
#         "score": 3,
#         "reason": "Reason for the generation.",
#         "model_name": "meta-llama/Meta-Llama-3.1-8B-Instruct",
#     }
# ]