URIAL¶
Generates a response using a non-instruct fine-tuned model.
URIAL is a pre-defined task that generates a response using a non-instruct fine-tuned
    model. This task is used to generate a response based on the conversation provided as
    input.
Input & Output Columns¶
graph TD
    subgraph Dataset
        subgraph Columns
            ICOL0[instruction]
            ICOL1[conversation]
        end
        subgraph New columns
            OCOL0[generation]
            OCOL1[model_name]
        end
    end
    subgraph URIAL
        StepInput[Input Columns: instruction, conversation]
        StepOutput[Output Columns: generation, model_name]
    end
    ICOL0 --> StepInput
    ICOL1 --> StepInput
    StepOutput --> OCOL0
    StepOutput --> OCOL1
    StepInput --> StepOutput
Inputs¶
- 
instruction ( str, optional): The instruction to generate a response from.
- 
conversation ( List[Dict[str, str]], optional): The conversation to generate a response from (the last message must be from the user).
Outputs¶
- 
generation ( str): The generated response.
- 
model_name ( str): The name of the model used to generate the response.
Examples¶
Generate text from an instruction¶
from distilabel.models import vLLM
from distilabel.steps.tasks import URIAL
step = URIAL(
    llm=vLLM(
        model="meta-llama/Meta-Llama-3.1-8B",
        generation_kwargs={"temperature": 0.7},
    ),
)
step.load()
results = next(
    step.process(inputs=[{"instruction": "What's the most most common type of cloud?"}])
)
# [
#     {
#         'instruction': "What's the most most common type of cloud?",
#         'generation': 'Clouds are classified into three main types, high, middle, and low. The most common type of cloud is the middle cloud.',
#         'distilabel_metadata': {...},
#         'model_name': 'meta-llama/Meta-Llama-3.1-8B'
#     }
# ]