Command Line Interface (CLI)¶
Distilabel offers a CLI to explore and re-run existing Pipeline dumps, meaning that an existing dump can be explored to see the steps, how those are connected, the runtime parameters used, and also re-run it with the same or different runtime parameters, respectively.
Available commands¶
The only available command as of the current version of distilabel is distilabel pipeline.
$ distilabel pipeline --help
 Usage: distilabel pipeline [OPTIONS] COMMAND [ARGS]...
 Commands to run and inspect Distilabel pipelines.
╭─ Options ───────────────────────────────────────────────────────────────────────────────╮
│ --help          Show this message and exit.                                             │
╰─────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Commands ──────────────────────────────────────────────────────────────────────────────╮
│ info      Get information about a Distilabel pipeline.                                  │
│ run       Run a Distilabel pipeline.                                                    │
╰─────────────────────────────────────────────────────────────────────────────────────────╯
So on, distilabel pipeline has two subcommands: info and run, as described below. Note that for testing purposes we will be using the following dataset.
distilabel pipeline info¶
$ distilabel pipeline info --help
 Usage: distilabel pipeline info [OPTIONS]
 Get information about a Distilabel pipeline.
╭─ Options ───────────────────────────────────────────────────────────────────────────╮
│ *  --config        TEXT  Path or URL to the Distilabel pipeline configuration file. │
│                          [default: None]                                            │
│                          [required]                                                 │
│    --help                Show this message and exit.                                │
╰─────────────────────────────────────────────────────────────────────────────────────╯
As we can see from the help message, we need to pass either a Path or a URL. This second option comes handy for datasets stored in Hugging Face Hub, for example:
distilabel pipeline info --config "https://huggingface.co/datasets/distilabel-internal-testing/instruction-dataset-mini-with-generations/raw/main/pipeline.yaml"
If we take a look:
The pipeline information includes the steps used in the Pipeline along with the Runtime Parameter that was used, as well as a description of each of them, and also the connections between these steps. These can be helpful to explore the Pipeline locally.
distilabel pipeline run¶
We can also run a Pipeline from the CLI just pointing to the same pipeline.yaml file or an URL pointing to it and calling distilabel pipeline run. Alternatively, an URL pointing to a Python script containing a distilabel pipeline can be used:
$ distilabel pipeline run --help
 Usage: distilabel pipeline run [OPTIONS]
 Run a Distilabel pipeline.
╭─ Options ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --param                                          PARSE_RUNTIME_PARAM  [default: (dynamic)]                                         │
│ --config                                         TEXT                 Path or URL to the Distilabel pipeline configuration file.   │
│                                                                       [default: None]                                              │
│ --script                                         TEXT                 URL pointing to a python script containing a distilabel      │
│                                                                       pipeline.                                                    │
│                                                                       [default: None]                                              │
│ --pipeline-variable-name                         TEXT                 Name of the pipeline in a script. I.e. the 'pipeline'        │
│                                                                       variable in `with Pipeline(...) as pipeline:...`.            │
│                                                                       [default: pipeline]                                          │
│ --ignore-cache              --no-ignore-cache                         Whether to ignore the cache and re-run the pipeline from     │
│                                                                       scratch.                                                     │
│                                                                       [default: no-ignore-cache]                                   │
│ --repo-id                                        TEXT                 The Hugging Face Hub repository ID to push the resulting     │
│                                                                       dataset to.                                                  │
│                                                                       [default: None]                                              │
│ --commit-message                                 TEXT                 The commit message to use when pushing the dataset.          │
│                                                                       [default: None]                                              │
│ --private                   --no-private                              Whether to make the resulting dataset private on the Hub.    │
│                                                                       [default: no-private]                                        │
│ --token                                          TEXT                 The Hugging Face Hub API token to use when pushing the       │
│                                                                       dataset.                                                     │
│                                                                       [default: None]                                              │
│ --help                                                                Show this message and exit.                                  │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
Using --config option, we must pass a path with a pipeline.yaml file.
To specify the runtime parameters of the steps we will need to use the --param option and the value of the parameter in the following format:
distilabel pipeline run --config "https://huggingface.co/datasets/distilabel-internal-testing/instruction-dataset-mini-with-generations/raw/main/pipeline.yaml" \
    --param load_dataset.repo_id=distilabel-internal-testing/instruction-dataset-mini \
    --param load_dataset.split=test \
    --param generate_with_gpt35.llm.generation_kwargs.max_new_tokens=512 \
    --param generate_with_gpt35.llm.generation_kwargs.temperature=0.7 \
    --param to_argilla.dataset_name=text_generation_with_gpt35 \
    --param to_argilla.dataset_workspace=admin
Or using --script we can pass directly a remote python script (keep in mind --config and --script are exclusive):
distilabel pipeline run --script "https://huggingface.co/datasets/distilabel-internal-testing/pipe_nothing_test/raw/main/pipe_nothing.py"
You can also pass runtime parameters to the python script as we saw with --config option.
Again, this helps with the reproducibility of the results, and simplifies sharing not only the final dataset but also the process to generate it.
