Argilla¶
This section contains the existing steps integrated with Argilla
so as to easily push the generated datasets to Argilla.
base
¶
ArgillaBase
¶
Bases: Step
, ABC
Abstract step that provides a class to subclass from, that contains the boilerplate code required to interact with Argilla, as well as some extra validations on top of it. It also defines the abstract methods that need to be implemented in order to add a new dataset type as a step.
Note
This class is not intended to be instanced directly, but via subclass.
Attributes:
Name | Type | Description |
---|---|---|
dataset_name |
RuntimeParameter[str]
|
The name of the dataset in Argilla where the records will be added. |
dataset_workspace |
Optional[RuntimeParameter[str]]
|
The workspace where the dataset will be created in Argilla. Defaults to
|
api_url |
Optional[RuntimeParameter[str]]
|
The URL of the Argilla API. Defaults to |
api_key |
Optional[RuntimeParameter[SecretStr]]
|
The API key to authenticate with Argilla. Defaults to |
Runtime parameters
dataset_name
: The name of the dataset in Argilla where the records will be added.dataset_workspace
: The workspace where the dataset will be created in Argilla. Defaults toNone
, which means it will be created in the default workspace.api_url
: The base URL to use for the Argilla API requests.api_key
: The API key to authenticate the requests to the Argilla API.
Input columns
- dynamic, based on the
inputs
value provided
Source code in src/distilabel/steps/argilla/base.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
outputs: StepColumns
property
¶
The outputs of the step is an empty list, since the steps subclassing from this one, will always be leaf nodes and won't propagate the inputs neither generate any outputs.
model_post_init(__context)
¶
Checks that the Argilla Python SDK is installed, and then filters the Argilla warnings.
Source code in src/distilabel/steps/argilla/base.py
load()
¶
Method to perform any initialization logic before the process
method is
called. For example, to load an LLM, stablish a connection to a database, etc.
Source code in src/distilabel/steps/argilla/base.py
preference
¶
PreferenceToArgilla
¶
Bases: ArgillaBase
Creates a preference dataset in Argilla.
Step that creates a dataset in Argilla during the load phase, and then pushes the input batches into it as records. This dataset is a preference dataset, where there's one field for the instruction and one extra field per each generation within the same record, and then a rating question per each of the generation fields. The rating question asks the annotator to set a rating from 1 to 5 for each of the provided generations.
Note
This step is meant to be used in conjunction with the UltraFeedback
step, or any other step
generating both ratings and responses for a given set of instruction and generations for the
given instruction. But alternatively, it can also be used with any other task or step generating
only the instruction
and generations
, as the ratings
and rationales
are optional.
Attributes:
Name | Type | Description |
---|---|---|
num_generations |
int
|
The number of generations to include in the dataset. |
dataset_name |
int
|
The name of the dataset in Argilla. |
dataset_workspace |
int
|
The workspace where the dataset will be created in Argilla. Defaults to
|
api_url |
int
|
The URL of the Argilla API. Defaults to |
api_key |
int
|
The API key to authenticate with Argilla. Defaults to |
Runtime parameters
api_url
: The base URL to use for the Argilla API requests.api_key
: The API key to authenticate the requests to the Argilla API.
Input columns
- instruction (
str
): The instruction that was used to generate the completion. - generations (
List[str]
): The completion that was generated based on the input instruction. - ratings (
List[str]
, optional): The ratings for the generations. If not provided, the generated ratings won't be pushed to Argilla. - rationales (
List[str]
, optional): The rationales for the ratings. If not provided, the generated rationales won't be pushed to Argilla.
Examples:
Push a preference dataset to an Argilla instance:
from distilabel.steps import PreferenceToArgilla
to_argilla = PreferenceToArgilla(
num_generations=2,
api_url="https://dibt-demo-argilla-space.hf.space/",
api_key="api.key",
dataset_name="argilla_dataset",
dataset_workspace="my_workspace",
)
to_argilla.load()
result = next(
to_argilla.process(
[
{
"instruction": "instruction",
"generations": ["first_generation", "second_generation"],
}
],
)
)
# >>> result
# [{'instruction': 'instruction', 'generations': ['first_generation', 'second_generation']}]
It can also include ratings and rationales:
result = next(
to_argilla.process(
[
{
"instruction": "instruction",
"generations": ["first_generation", "second_generation"],
"ratings": ["4", "5"],
"rationales": ["rationale for 4", "rationale for 5"],
}
],
)
)
# >>> result
# [
# {
# 'instruction': 'instruction',
# 'generations': ['first_generation', 'second_generation'],
# 'ratings': ['4', '5'],
# 'rationales': ['rationale for 4', 'rationale for 5']
# }
# ]
Source code in src/distilabel/steps/argilla/preference.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
inputs: List[str]
property
¶
The inputs for the step are the instruction
and the generations
. Optionally, one could also
provide the ratings
and the rationales
for the generations.
optional_inputs: List[str]
property
¶
The optional inputs for the step are the ratings
and the rationales
for the generations.
load()
¶
Sets the _instruction
and _generations
attributes based on the inputs_mapping
, otherwise
uses the default values; and then uses those values to create a FeedbackDataset
suited for
the text-generation scenario. And then it pushes it to Argilla.
Source code in src/distilabel/steps/argilla/preference.py
process(inputs)
¶
Creates and pushes the records as rg.Record
s to the Argilla dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Returns:
Type | Description |
---|---|
StepOutput
|
A list of Python dictionaries with the outputs of the task. |
Source code in src/distilabel/steps/argilla/preference.py
text_generation
¶
TextGenerationToArgilla
¶
Bases: ArgillaBase
Creates a text generation dataset in Argilla.
Step
that creates a dataset in Argilla during the load phase, and then pushes the input
batches into it as records. This dataset is a text-generation dataset, where there's one field
per each input, and then a label question to rate the quality of the completion in either bad
(represented with 👎) or good (represented with 👍).
Note
This step is meant to be used in conjunction with a TextGeneration
step and no column mapping
is needed, as it will use the default values for the instruction
and generation
columns.
Attributes:
Name | Type | Description |
---|---|---|
dataset_name |
The name of the dataset in Argilla. |
|
dataset_workspace |
The workspace where the dataset will be created in Argilla. Defaults to
|
|
api_url |
The URL of the Argilla API. Defaults to |
|
api_key |
The API key to authenticate with Argilla. Defaults to |
Runtime parameters
api_url
: The base URL to use for the Argilla API requests.api_key
: The API key to authenticate the requests to the Argilla API.
Input columns
- instruction (
str
): The instruction that was used to generate the completion. - generation (
str
orList[str]
): The completions that were generated based on the input instruction.
Examples:
Push a text generation dataset to an Argilla instance:
from distilabel.steps import PreferenceToArgilla
to_argilla = TextGenerationToArgilla(
num_generations=2,
api_url="https://dibt-demo-argilla-space.hf.space/",
api_key="api.key",
dataset_name="argilla_dataset",
dataset_workspace="my_workspace",
)
to_argilla.load()
result = next(
to_argilla.process(
[
{
"instruction": "instruction",
"generation": "generation",
}
],
)
)
# >>> result
# [{'instruction': 'instruction', 'generation': 'generation'}]
Source code in src/distilabel/steps/argilla/text_generation.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
inputs: List[str]
property
¶
The inputs for the step are the instruction
and the generation
.
load()
¶
Sets the _instruction
and _generation
attributes based on the inputs_mapping
, otherwise
uses the default values; and then uses those values to create a FeedbackDataset
suited for
the text-generation scenario. And then it pushes it to Argilla.
Source code in src/distilabel/steps/argilla/text_generation.py
process(inputs)
¶
Creates and pushes the records as FeedbackRecords to the Argilla dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
StepInput
|
A list of Python dictionaries with the inputs of the task. |
required |
Returns:
Type | Description |
---|---|
StepOutput
|
A list of Python dictionaries with the outputs of the task. |