SGLangEmbeddings¶
sglang
library implementation for embedding generation.
Attributes¶
-
model: the model Hugging Face Hub repo id or a path to a directory containing the model weights and configuration files.
-
dtype: the data type to use for the model. Defaults to
auto
. -
trust_remote_code: whether to trust the remote code when loading the model. Defaults to
False
. -
quantization: the quantization mode to use for the model. Defaults to
None
. -
revision: the revision of the model to load. Defaults to
None
. -
seed: the seed to use for the random number generator. Defaults to
0
. -
extra_kwargs: additional dictionary of keyword arguments that will be passed to the
Engine
class ofsglang
library. Defaults to{}
. -
_model: the
SGLang
model instance. This attribute is meant to be used internally and should not be accessed directly. It will be set in theload
method.
Examples¶
Generating sentence embeddings¶
if __name__ == "__main__":
from distilabel.models import SGLangEmbeddings
embeddings = SGLangEmbeddings(model="intfloat/e5-mistral-7b-instruct")
embeddings.load()
results = embeddings.encode(inputs=["distilabel is awesome!", "and Argilla!"])
print(results)
# [
# [0.0203704833984375, -0.0060882568359375, ...],
# [0.02398681640625, 0.0177001953125 ...],
# ]