FormatChatGenerationDPO¶
Format the output of a combination of a ChatGeneration
+ a preference task for Direct Preference Optimization (DPO).
FormatChatGenerationDPO
is a Step
that formats the output of the combination of a ChatGeneration
task with a preference Task
i.e. a task generating ratings
such as UltraFeedback
following the standard
formatting from frameworks such as axolotl
or alignment-handbook
., so that those are used to rank the
existing generations and provide the chosen
and rejected
generations based on the ratings
.
Note¶
The messages
column should contain at least one message from the user, the generations
column should contain at least two generations, the ratings
column should contain the same
number of ratings as generations.
Input & Output Columns¶
graph TD
subgraph Dataset
subgraph Columns
ICOL0[messages]
ICOL1[generations]
ICOL2[generation_models]
ICOL3[ratings]
end
subgraph New columns
OCOL0[prompt]
OCOL1[prompt_id]
OCOL2[chosen]
OCOL3[chosen_model]
OCOL4[chosen_rating]
OCOL5[rejected]
OCOL6[rejected_model]
OCOL7[rejected_rating]
end
end
subgraph FormatChatGenerationDPO
StepInput[Input Columns: messages, generations, generation_models, ratings]
StepOutput[Output Columns: prompt, prompt_id, chosen, chosen_model, chosen_rating, rejected, rejected_model, rejected_rating]
end
ICOL0 --> StepInput
ICOL1 --> StepInput
ICOL2 --> StepInput
ICOL3 --> StepInput
StepOutput --> OCOL0
StepOutput --> OCOL1
StepOutput --> OCOL2
StepOutput --> OCOL3
StepOutput --> OCOL4
StepOutput --> OCOL5
StepOutput --> OCOL6
StepOutput --> OCOL7
StepInput --> StepOutput
Inputs¶
-
messages (
List[Dict[str, str]]
): The conversation messages. -
generations (
List[str]
): The generations produced by theLLM
. -
generation_models (
List[str]
, optional): The model names used to generate thegenerations
, only available if themodel_name
from theChatGeneration
task/s is combined into a single column named this way, otherwise, it will be ignored. -
ratings (
List[float]
): The ratings for each of thegenerations
, produced by a preference task such asUltraFeedback
.
Outputs¶
-
prompt (
str
): The user message used to generate thegenerations
with theLLM
. -
prompt_id (
str
): TheSHA256
hash of theprompt
. -
chosen (
List[Dict[str, str]]
): Thechosen
generation based on theratings
. -
chosen_model (
str
, optional): The model name used to generate thechosen
generation, if thegeneration_models
are available. -
chosen_rating (
float
): The rating of thechosen
generation. -
rejected (
List[Dict[str, str]]
): Therejected
generation based on theratings
. -
rejected_model (
str
, optional): The model name used to generate therejected
generation, if thegeneration_models
are available. -
rejected_rating (
float
): The rating of therejected
generation.
Examples¶
Format your dataset for DPO fine tuning¶
from distilabel.steps import FormatChatGenerationDPO
format_dpo = FormatChatGenerationDPO()
format_dpo.load()
# NOTE: "generation_models" can be added optionally.
result = next(
format_dpo.process(
[
{
"messages": [{"role": "user", "content": "What's 2+2?"}],
"generations": ["4", "5", "6"],
"ratings": [1, 0, -1],
}
]
)
)
# >>> result
# [
# {
# 'messages': [{'role': 'user', 'content': "What's 2+2?"}],
# 'generations': ['4', '5', '6'],
# 'ratings': [1, 0, -1],
# 'prompt': "What's 2+2?",
# 'prompt_id': '7762ecf17ad41479767061a8f4a7bfa3b63d371672af5180872f9b82b4cd4e29',
# 'chosen': [{'role': 'user', 'content': "What's 2+2?"}, {'role': 'assistant', 'content': '4'}],
# 'chosen_rating': 1,
# 'rejected': [{'role': 'user', 'content': "What's 2+2?"}, {'role': 'assistant', 'content': '6'}],
# 'rejected_rating': -1
# }
# ]