ComplexityScorer¶
Score instructions based on their complexity using an LLM
.
ComplexityScorer
is a pre-defined task used to rank a list of instructions based in
their complexity. It's an implementation of the complexity score task from the paper
'What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection
in Instruction Tuning'.
Attributes¶
- _template: a Jinja2 template used to format the input for the LLM.
Input & Output Columns¶
graph TD
subgraph Dataset
subgraph Columns
ICOL0[instructions]
end
subgraph New columns
OCOL0[scores]
OCOL1[model_name]
end
end
subgraph ComplexityScorer
StepInput[Input Columns: instructions]
StepOutput[Output Columns: scores, model_name]
end
ICOL0 --> StepInput
StepOutput --> OCOL0
StepOutput --> OCOL1
StepInput --> StepOutput
Inputs¶
- instructions (
List[str]
): The list of instructions to be scored.
Outputs¶
-
scores (
List[float]
): The score for each instruction. -
model_name (
str
): The model name used to generate the scores.
Examples¶
Evaluate the complexity of your instructions¶
from distilabel.steps.tasks import ComplexityScorer
from distilabel.models import InferenceEndpointsLLM
# Consider this as a placeholder for your actual LLM.
scorer = ComplexityScorer(
llm=InferenceEndpointsLLM(
model_id="mistralai/Mistral-7B-Instruct-v0.2",
)
)
scorer.load()
result = next(
scorer.process(
[{"instructions": ["plain instruction", "highly complex instruction"]}]
)
)
# result
# [{'instructions': ['plain instruction', 'highly complex instruction'], 'model_name': 'test', 'scores': [1, 5], 'distilabel_metadata': {'raw_output_complexity_scorer_0': 'output'}}]
Generate structured output with default schema¶
from distilabel.steps.tasks import ComplexityScorer
from distilabel.models import InferenceEndpointsLLM
# Consider this as a placeholder for your actual LLM.
scorer = ComplexityScorer(
llm=InferenceEndpointsLLM(
model_id="mistralai/Mistral-7B-Instruct-v0.2",
),
use_default_structured_output=use_default_structured_output
)
scorer.load()
result = next(
scorer.process(
[{"instructions": ["plain instruction", "highly complex instruction"]}]
)
)
# result
# [{'instructions': ['plain instruction', 'highly complex instruction'], 'model_name': 'test', 'scores': [1, 2], 'distilabel_metadata': {'raw_output_complexity_scorer_0': '{ \n "scores": [\n 1, \n 2\n ]\n}'}}]