EvolInstructGenerator¶
Generate evolved instructions using an LLM
.
WizardLM: Empowering Large Language Models to Follow Complex Instructions
Attributes¶
-
num_instructions: The number of instructions to be generated.
-
generate_answers: Whether to generate answers for the instructions or not. Defaults to
False
. -
mutation_templates: The mutation templates to be used for the generation of the instructions.
-
min_length: Defines the length (in bytes) that the generated instruction needs to be higher than, to be considered valid. Defaults to
512
. -
max_length: Defines the length (in bytes) that the generated instruction needs to be lower than, to be considered valid. Defaults to
1024
. -
seed: The seed to be set for
numpy
in order to randomly pick a mutation method. Defaults to42
.
Runtime Parameters¶
-
min_length: Defines the length (in bytes) that the generated instruction needs to be higher than, to be considered valid.
-
max_length: Defines the length (in bytes) that the generated instruction needs to be lower than, to be considered valid.
-
seed: The seed to be set for
numpy
in order to randomly pick a mutation method.
Input & Output Columns¶
graph TD
subgraph Dataset
subgraph New columns
OCOL0[instruction]
OCOL1[answer]
OCOL2[instructions]
OCOL3[model_name]
end
end
subgraph EvolInstructGenerator
StepOutput[Output Columns: instruction, answer, instructions, model_name]
end
StepOutput --> OCOL0
StepOutput --> OCOL1
StepOutput --> OCOL2
StepOutput --> OCOL3
Outputs¶
-
instruction (
str
): The generated instruction ifgenerate_answers=False
. -
answer (
str
): The generated answer ifgenerate_answers=True
. -
instructions (
List[str]
): The generated instructions ifgenerate_answers=True
. -
model_name (
str
): The name of the LLM used to generate and evolve the instructions.
Examples¶
Generate evolved instructions without initial instructions¶
from distilabel.steps.tasks import EvolInstructGenerator
from distilabel.models import InferenceEndpointsLLM
# Consider this as a placeholder for your actual LLM.
evol_instruct_generator = EvolInstructGenerator(
llm=InferenceEndpointsLLM(
model_id="mistralai/Mistral-7B-Instruct-v0.2",
),
num_instructions=2,
)
evol_instruct_generator.load()
result = next(scorer.process())
# result
# [{'instruction': 'generated instruction', 'model_name': 'test'}]