URIAL¶
Generates a response using a non-instruct fine-tuned model.
URIAL
is a pre-defined task that generates a response using a non-instruct fine-tuned
model. This task is used to generate a response based on the conversation provided as
input.
Input & Output Columns¶
graph TD
subgraph Dataset
subgraph Columns
ICOL0[instruction]
ICOL1[conversation]
end
subgraph New columns
OCOL0[generation]
OCOL1[model_name]
end
end
subgraph URIAL
StepInput[Input Columns: instruction, conversation]
StepOutput[Output Columns: generation, model_name]
end
ICOL0 --> StepInput
ICOL1 --> StepInput
StepOutput --> OCOL0
StepOutput --> OCOL1
StepInput --> StepOutput
Inputs¶
-
instruction (
str
, optional): The instruction to generate a response from. -
conversation (
List[Dict[str, str]]
, optional): The conversation to generate a response from (the last message must be from the user).
Outputs¶
-
generation (
str
): The generated response. -
model_name (
str
): The name of the model used to generate the response.
Examples¶
Generate text from an instruction¶
from distilabel.models import vLLM
from distilabel.steps.tasks import URIAL
step = URIAL(
llm=vLLM(
model="meta-llama/Meta-Llama-3.1-8B",
generation_kwargs={"temperature": 0.7},
),
)
step.load()
results = next(
step.process(inputs=[{"instruction": "What's the most most common type of cloud?"}])
)
# [
# {
# 'instruction': "What's the most most common type of cloud?",
# 'generation': 'Clouds are classified into three main types, high, middle, and low. The most common type of cloud is the middle cloud.',
# 'distilabel_metadata': {...},
# 'model_name': 'meta-llama/Meta-Llama-3.1-8B'
# }
# ]