AzureOpenAILLM¶
Azure OpenAI LLM implementation running the async API client.
Attributes¶
-
model: the model name to use for the LLM i.e. the name of the Azure deployment.
-
base_url: the base URL to use for the Azure OpenAI API can be set with
AZURE_OPENAI_ENDPOINT
. Defaults toNone
which means that the value set for the environment variableAZURE_OPENAI_ENDPOINT
will be used, orNone
if not set. -
api_key: the API key to authenticate the requests to the Azure OpenAI API. Defaults to
None
which means that the value set for the environment variableAZURE_OPENAI_API_KEY
will be used, orNone
if not set. -
api_version: the API version to use for the Azure OpenAI API. Defaults to
None
which means that the value set for the environment variableOPENAI_API_VERSION
will be used, orNone
if not set.
Examples¶
Generate text¶
from distilabel.llms import AzureOpenAILLM
llm = AzureOpenAILLM(model="gpt-4-turbo", api_key="api.key")
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Hello world!"}]])
Generate text from a custom endpoint following the OpenAI API¶
from distilabel.llms import AzureOpenAILLM
llm = AzureOpenAILLM(
model="prometheus-eval/prometheus-7b-v2.0",
base_url=r"http://localhost:8080/v1"
)
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Hello world!"}]])
Generate structured data¶
from pydantic import BaseModel
from distilabel.llms import AzureOpenAILLM
class User(BaseModel):
name: str
last_name: str
id: int
llm = AzureOpenAILLM(
model="gpt-4-turbo",
api_key="api.key",
structured_output={"schema": User}
)
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Create a user profile for the following marathon"}]])