Skip to content

MistralLLM

Mistral LLM implementation running the async API client.

Attributes

  • model: the model name to use for the LLM e.g. "mistral-tiny", "mistral-large", etc.

  • endpoint: the endpoint to use for the Mistral API. Defaults to "https://api.mistral.ai".

  • api_key: the API key to authenticate the requests to the Mistral API. Defaults to None which means that the value set for the environment variable OPENAI_API_KEY will be used, or None if not set.

  • max_retries: the maximum number of retries to attempt when a request fails. Defaults to 5.

  • timeout: the maximum time in seconds to wait for a response. Defaults to 120.

  • max_concurrent_requests: the maximum number of concurrent requests to send. Defaults to 64.

  • structured_output: a dictionary containing the structured output configuration configuration using instructor. You can take a look at the dictionary structure in InstructorStructuredOutputType from distilabel.steps.tasks.structured_outputs.instructor.

  • _api_key_env_var: the name of the environment variable to use for the API key. It is meant to be used internally.

  • _aclient: the Mistral to use for the Mistral API. It is meant to be used internally. Set in the load method.

Runtime Parameters

  • api_key: the API key to authenticate the requests to the Mistral API.

  • max_retries: the maximum number of retries to attempt when a request fails. Defaults to 5.

  • timeout: the maximum time in seconds to wait for a response. Defaults to 120.

  • max_concurrent_requests: the maximum number of concurrent requests to send. Defaults to 64.

Examples

Generate text

from distilabel.llms import MistralLLM

llm = MistralLLM(model="open-mixtral-8x22b")

llm.load()

# Call the model
output = llm.generate(inputs=[[{"role": "user", "content": "Hello world!"}]])

Generate structured data: