OpenAILLM¶
OpenAI LLM implementation running the async API client.
Attributes¶
-
model: the model name to use for the LLM e.g. "gpt-3.5-turbo", "gpt-4", etc. Supported models can be found here.
-
base_url: the base URL to use for the OpenAI API requests. Defaults to
None
, which means that the value set for the environment variableOPENAI_BASE_URL
will be used, or "https://api.openai.com/v1" if not set. -
api_key: the API key to authenticate the requests to the OpenAI API. Defaults to
None
which means that the value set for the environment variableOPENAI_API_KEY
will be used, orNone
if not set. -
default_headers: the default headers to use for the OpenAI API requests.
-
max_retries: the maximum number of times to retry the request to the API before failing. Defaults to
6
. -
timeout: the maximum time in seconds to wait for a response from the API. Defaults to
120
. -
structured_output: a dictionary containing the structured output configuration configuration using
instructor
. You can take a look at the dictionary structure inInstructorStructuredOutputType
fromdistilabel.steps.tasks.structured_outputs.instructor
.
Runtime Parameters¶
-
base_url: the base URL to use for the OpenAI API requests. Defaults to
None
. -
api_key: the API key to authenticate the requests to the OpenAI API. Defaults to
None
. -
max_retries: the maximum number of times to retry the request to the API before failing. Defaults to
6
. -
timeout: the maximum time in seconds to wait for a response from the API. Defaults to
120
.
Examples¶
Generate text¶
from distilabel.models.llms import OpenAILLM
llm = OpenAILLM(model="gpt-4-turbo", api_key="api.key")
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Hello world!"}]])
Generate text from a custom endpoint following the OpenAI API¶
from distilabel.models.llms import OpenAILLM
llm = OpenAILLM(
model="prometheus-eval/prometheus-7b-v2.0",
base_url=r"http://localhost:8080/v1"
)
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Hello world!"}]])
Generate structured data¶
from pydantic import BaseModel
from distilabel.models.llms import OpenAILLM
class User(BaseModel):
name: str
last_name: str
id: int
llm = OpenAILLM(
model="gpt-4-turbo",
api_key="api.key",
structured_output={"schema": User}
)
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Create a user profile for the following marathon"}]])
Generate with Batch API (offline batch generation)¶
from distilabel.models.llms import OpenAILLM
load = llm = OpenAILLM(
model="gpt-3.5-turbo",
use_offline_batch_generation=True,
offline_batch_generation_block_until_done=5, # poll for results every 5 seconds
)
llm.load()
output = llm.generate_outputs(inputs=[[{"role": "user", "content": "Hello world!"}]])
# [['Hello! How can I assist you today?']]